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PREFACE 
 
 
 
 
 
 
The decision-maker, be he motivated by the need to predict or to control, usually faces a 
complex system of interrelated components, such as resources, desired outcomes or 
objectives, persons or groups of persons, etc.: he is interested in analyzing this system. 
Presumably, the better he understands this complexity, the better his prediction or 
decision will be. In this book we present a theory, whose application reduces the study of 
even formidably intricate systems to a sequence of pairwise comparisons of properly 
identified components.  
 This theory had its beginnings in the fall of 1971 while I was working on 
problems of contingency planning for the Department of Defense. It had its adolescence 
in 1972 in a study for the NSF (and later also ERDA) on rationing electricity to industries 
according to their contribution to the welfare of the nation. The origins of the scale which 
relates judgments to numbers date back to the serious events of June and July, 1972, in 
Cairo while I was there analyzing the effect of “No Peace, No War” on Egypt’s 
economic, political, and military status. 
 The application maturity of the theory came with the Sudan Transport Study in 
1973, which I was directing. Its theoretical enrichment was happening all along the way, 
with greatest intensity between 1974 and 1978. The applications so far have been many 
and varied, ranging from an analysis of terrorism for the Arms Control and Disarmament 
Agency (published in a book edited by Dr. Robert Kupperman of the Agency) where I 
worked in Washington for seven years, and several other studies of conflict (e.g., the 
conflict in Northern Island) to allocating resources according to priority for large private, 
governmental, and international concerns.  
 The theory reflects what appears to be an innate method of operation of the 
human mind. When presented with a multitude of elements, controllable or not, which 
comprise a complex situation, it aggregates them into groups, according to whether they 
share certain properties. Our model of this brain function allows a repetition of this 
process, in that we consider these groups, or rather their identifying common properties, 
as the elements of a new level in the system. These elements may, in turn, be grouped 
according to another set of properties, generating the elements of yet another “higher” 
level, until we reach a single “top” element which can often be identified as the goal of 
our decision-making process. 
 What we have just described is commonly called a hierarchy, i.e., a system of 
stratified levels, each consisting of so many elements, or factors. The central question is, 
in terms of this hierarchy: how strongly do the individual factors of the lowest level of the 
hierarchy influence its top factor, the overall goal? Since this influence will not be 
uniform over the factors, we are led to the identification of their intensity or, as we prefer 
to call it, their priorities. 
 This determination of the priorities of the lowest factors relative to the goal, can 
be reduced to a sequence of priority problems, one for each level, and each such priority 



 x

problem to a sequence of pairwise comparisons. These comparisons remain the central 
ingredients to our theory, even if the original problem should have been complicated by 
feedback relations between various levels or factors. 
  Let us return to our suggestion that our theory is a model of the way in which the 
human mind conceptualizes and structures a complicated problem. We were influences 
by the following observations: 
 
(1) When we watch people participating in the process of structuring and prioritizing a 

hierarchy, we find that they engage naturally in successive grouping of items within 
levels and in distinguishing among levels of complexity. 

(2) Individuals informed about a particular problem may structure it hierarchically 
somewhat differently, but if their judgments are similar, their overall answers tend 
to be similar. Also, the process is robust. In other words, fine distinctions within the 
hierarchy tend in practice not to be decisive. 

(3) In the course of developing the theory we find a mathematically reasonable way to 
handle judgments. 

 
Participants tended to find that the process captures their intuitive understanding of a 
problem. Furthermore, the psychological limits seem to be consonant with conditions for 
mathematical stability of the results. 
 In his beautiful book Number the Language of Science, The Macmillan Company, 
New York (3rd edition), Dantzig observes that the human mind has a sense for numbers 
which is primitive and predates true counting; namely, the ability to recognize that a 
small collection of objects has increased or decreased when things are added to it or 
subtracted from it.  This is an intuitive talent which is not the same as counting. He points 
out that individuals and even some animals have this talent. Finally, he speculates on 
whether the concept is born of experience or whether experience merely serves to render 
explicit what is already latent in mind. On reflection it appears that it is the latter; that 
consciousness is a process of identifying events and distinguishing the intensity or degree 
of differences among them according to whatever properties they have in common. Thus, 
what we know as “qualitative” is a fuzzy way of acknowledging differences. Since our 
survival requires that we be more specific, we have developed the talent of number sense. 
 When a single experience involves a variety of different sensations or activities 
and some kind of integrated interpretation or action is needed, these activities must be 
combined somehow. How we combine them depends on the purpose they are supposed to 
serve; our objectives dictate where we place the emphasis. We need the idea of priority 
and its measurement.  
 The methodology should then be useful to model problems incorporating 
knowledge and judgments in such a way that the issues involved are clearly articulated, 
evaluated, debated, and prioritized. The judgments can be refined through a continuous 
application of a feed back process, each application leading to a refinement and 
sharpening of the judgments. We have even used the Analytic Hierarchy Process to 
obtain group judgments through consensus. There is no such thing as the answer but an 
answer, which with constant exposure, develops into the answer for the decision-maker. 
In whatever form the final judgment is cast, there will always be people whose judgments 
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differ from any particular outcome but when a group was involved in formulating 
judgments a synthesis of interests would have been created.  
 We show that age of the old adage that one cannot compare apples and oranges is 
not true. An apple and an orange have many characteristics in common: size, shape, taste, 
aroma, color, seediness, juiciness, and so on. We may prefer an orange for some 
characteristics and an apple for others. In addition, the strength of our preference for 
these characteristics may vary. We may indifferent to size and color but may have a 
strong preference for taste which again may vary with the time of day. It is our thesis that 
this sort of complicated comparison occurs in real life over and over again, and some 
kind of a mathematical approach is required. We will also develop a dynamic method for 
such comparisons.  
 The practice of decision-making is concerned with weighting alternatives, all of 
which fulfill a set of desired objectives. The problem is to choose that alternative which 
most strongly fulfills the entire set of objectives. We are interested in deriving numerical 
weights for alternatives with respect to sub-objectives and for sub-objectives with respect 
to higher order objectives. We would like these weights to be meaningful for allocating 
resources. For example, if they are derived to represent the value of money or distance or 
whatever physical quantity is being considered, they should be the same, or close to, what 
an economist or physicist may obtain using his methods of measurement. Thus our 
process of weighting should produce weights or priorities that are estimated of an 
understanding ratio scale. At the same time in situations with physical interdependence 
among activities, high priority activities which depend on low priority ones must not 
inadvertently be short-changed by reducing the resource allocation to the low priority 
ones. That is why resource allocation must be made subject to interdependence 
constraints.  
 Even with the same constraints there exist a variety of decision-making styles. 
One Korean economic planner –the man who thought his country should do better than 
Japan- said:  
 
In Japan, the decision process is talk, talk, talk, until you reach consensus. In Korea and in China, it is talk, 
talk, but then somebody on top makes a decision. You see in the humblest Korean peasant’s home, where 
he is master. You see it, and criticize, in our politics. We see in our big business where there is excellent 
research, but the final decision is the president’s. This can create problems as our pattern of industry 
becomes more complicated. But it is very good in the early states of industrial growth.  
 
This fits well with the comments of a senior Japanese civil servant on the decision 
process in Japan: 
 
Every decision in Japan is taken by consensus. In Japanese government, most policies are originally 
suggested by officials. Their suggestions then go through many forums, of which the cabinet is only the 
last. Even in cabinet, talk can continue for hours without anybody being very precise. Then at the end, the 
prime minister says: this is our consensus. He is not very precise either. But action can then be taken in line 
with that unprecise consensus, and with everybody feeling he has had some say in what being done. The 
consequence is that in Japan every decision is mediocre. But execution is then excellent. (The Economist, 7 
May 1977, p. 46.) 
 

Sometimes decisions taken by large organizations or governments appear to 
ignore human beings. Emilio Daddario in one of his papers says that:  
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Because of the uncertainties of political decision-making, society does not perform up to its technical 
capabilities ….. Until the political process provides a clear ranking of priorities, the contributions of 
science and technology to specific problems of public welfare will probably remain random and 
unsystematic … The political decision-makers must take care that, in adopting a systematic approach to the 
ranking of priorities, they do not abdicate their primary function of defending human values. In using this 
approach to solve large social problems, the decision-makers are learning how to resolve quantitatively 
many decisions previously left to intuitive or normative judgments. (Emilio Dadario, Ventures, Magazine 
of the Yale Graduate School, Spring, 1971)  
 
Perhaps, our quantitative approach is a process which avoids the dehumanizing dangers 
of which Daddario speaks.  
 This book is intended for readers of diverse backgrounds and intentionally 
involves some repetition of ideas. It is not solely aim at people doing research or 
colleagues who have distinguished themselves in the area of measurement. 
 I am indebted to my colleagues, Dr. James P. Bennet and Dr. Carter C. Waid for 
stimulating discussion and challenging ideas, and to my friend Dr. Jeorg Mayer for 
reading the manuscript, rearranging it, and rewriting in some sections to tighten the 
exposition.  I am also grateful for a rearrangement and edition of an earlier draft by my 
ex-student and collaborator in making applications to conflict resolution, Dr. Joyce 
Alexander. To seven lively young minds, my students past and present, I want to express 
my lasting gratitude for interaction, rising to challenges, and helping with the computer. 
They are Dr. Peter Blair, Dr. Kun-Yuan Chen, Anand Desai, Dr. Eren Erdener, Dr. Fred 
Ma, Dr. Reynaldo Mariano, and Dr. Luis Vargas. Finally, to my secretary, assistant, and 
willing helper, Mrs. Mary Lou Brown, goes my deep appreciation for her high quality 
work on the manuscript.  
 

Thomas L. Saaty 
University of Pennsylvania 1980 
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PREFACE TO THE SECOND REVISED EDITION 

 
The reader is to consult the new materials of this second extended edition in the nearly 
200-page addendum, particularly those relating to the axioms, and to absolute 
measurement. The question of rank behavior is covered in some detail. It is interesting 
and reveals how relative measurement, which may permit rank reversal, compares with 
absolute measurement, which legislates rank preservation by the nature of its normative 
standards. As of this writing, there have appeared two bibliographies on the subject. 
There have been three special issues of journals: Socio-Economic Planning Sciences, 
December, 1986, Mathematical Modeling, August, 1987, and the European Journal of 
Operations Research, August, 1990. Some of the other books on the topic which have 
appeared both in English and in other languages are listed inside the back cover.  
 
 

Thomas L. Saaty 
University of Pittsburgh 1990 
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PART  

ONE 
 
 

THE ANALYTIC HIERARCHY  
PROCESS 

 
 
THEME   Decomposition by hierarchies and synthesis by finding relations through 
informed judgment. 
 When economic factors have been reduced to numbers measured in dollars, when 
numbers of objects, their weight in tons, and the time needed to produce them have been 
calculated and when probabilities have been estimated, our modeling of complex human 
problems often would have reached the limits of its effectiveness. It depends strongly on 
what factors we can measure. 
 If then the models do not work well because we have left out significant factors 
by making simplifying assumptions, at least in the social sciences, we blame the result on 
politics and on capricious human behavior and other factors regarded as annoying 
aberrations of human nature which will disappear in time. But these are precisely the 
controlling factors that we must deal with and measure in order to get realistic answers. 
We must stop making simplifying assumptions to suit our quantitative models and deal 
with complex situations as they are. To be realistic our models must include and measure 
all-important tangible and intangible, quantitatively measurable, and qualitative factors. 
This is precisely what we do with the analytic hierarchy process (AHP). We also allow 
for differences in opinion and for conflicts as the case is in the real world. We intend to 
develop this approach and show the reader how effective it is as a tool. 
 Chapter 1 gives a general introduction to the subject followed by examples in 
Chapter 2. Chapter 3 provides background on scales and consistency and Chapter 4 is 
concerned with hierarchic structures and their consistency. 
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CHAPTER  

ONE 
 

HIERARCHIES AND PRIORITIES:  
A FIRST LOOK 

 
1-1 INTRODUCTION 
 
When we think, we identify objects or ideas and also relations among them. When we 
identify anything, we decompose the complexity which we encounter. When we discover 
relations, we synthesize. This is the fundamental process underlying perception: 
decomposition and synthesis. The elaboration of this concept and its practical 
implications interest us here. 
 We all experience reality sufficiently close, so that though our decompositions of 
it may be differ, our evaluations at the operational level tend to be close, particularly 
when it is supported by successful experience in fulfilling our common purposes. Thus 
we may model reality somewhat differently, but we manage to communicate a sense of 
judgment, which involves common understanding (but not without differences). We need 
to exploit this manifestation of judgment and of learning.  
 Our purpose is to develop a theory and provide a methodology for modeling 
unstructured problems in the economic, social, and management sciences. Sometimes we 
forget how long it took the human race to evolve measurement scales that are useful in 
daily living. The evolution of monetary units with wide acceptance has taken thousands 
of years of barter and legislation in a successive approximation process to design a 
medium for exchange, which we call money. Money also serves as a basis of 
measurement of all kinds of goods and services. This evolution of a measurement scale, 
i.e., money, has helped to structure economic theory, making it amenable to empirical 
tests. The development of money has been an interactive process refining human 
judgment and experience on the one hand, and the medium of measurement on the other. 
This process has also established a framework, which incorporates both philosophy and 
mathematics in the challenging science of economics. Economic theory is tied today very 
strongly to its unit of measurement, but has problems in dealing with political and social 
values that do not have economic implications. 
 Social values in our complex society call for a convenient method of scaling to 
enable us, on a daily basis, to evaluate tradeoffs between money, environmental quality, 
health, happiness, and similar entities. Such an approach should facilitate interaction 
between judgment and the social phenomena to which it is applied. We need such an 
approach precisely because they are no social measurement scales that have acquired 
popular use, although for a theory of measurement.  
 The acid test for a new tool is how “natural” and easy it is to understand and how 
well it integrates within existing theory, whether it is accepted by those who need to use 
it, and how well it works in solving their problems.  
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 Our theory was developed to solve a specific problem in contingency planning 
(Saaty, 1972) and a later major application was to alternative futures for a developing 
country, the Sudan (Saaty, 1977d). The result was a set of priorities and an investment 
plan for projects to be undertaken there in the late 1980s. The ideas have gradually 
evolved through use in a number of other applications ranging from energy allocation 
(Saaty and Mariano, 1979), investment in technologies under uncertainty, dealing with 
terrorism (Saaty and Bennett, 1977), buying a car, to choosing a job and selecting a 
school. Using pairwise comparison judgments for input, we can cope (in what we see as a 
natural way) with factors which, in the mainstream of applications, have not been 
effectively quantified. Naturally, one has to be concerned with the ambiguity, which 
occurs whenever numbers are associated with judgment; otherwise, one may fall in the 
trap of the modern epithet: “Garbage in, garbage out.” Judgment is difficult to work with 
and widely variable. But we can study the consistency of judgment and its validity. 
 Various applications of the theory have involved the participation of lawyers, 
engineers, political, social and physical scientists and mathematicians, and even children. 
All felt comfortable with the easy and natural way they were to provide pairwise 
comparisons in their area of expertise, and with the explanation of the method which was 
usually interpreted to them non-technically. 
 But why this obsession with numbers and measurement? How do we hope it will 
help us and how will it work? We constantly offered techniques to cope with every 
phenomenon we face today. But the techniques cannot cope with entities for which there 
are not measures. Here we have an effective way to create measures for such entities and 
then use them in decision-making.  
 Our approach, which is sufficiently general to use both known measurement and 
judgment, may be better appreciated through the following quotation (Churchman and 
Eisenber, 1969): 
 
…It seems almost obvious that we cannot solve present-day major political and organizational problems 
simply by grinding through a mathematical model or computer a set of accepted inputs. What we require 
besides is the design of better deliberation and judgment. Once we begin to understand the process of 
deliberation and judgment we may on a better objective method, that is, a way to express optimal 
deliberation in a precise and warranted form.  
 
 In general, decision making involves the following kinds concerns: (1) planning; 
(2) generating a set of alternative; (3) setting priorities; (4) choosing a best policy after 
finding a set of alternatives; (5) allocating resources; (6) determining requirements; (7) 
predicting outcomes; (8) designing systems; (9) measuring performance; (10) insuring the 
stability of a system; (11) optimizing; and (12) resolving conflict. 
 Solving decision problems has suffered from an overabundance of “patent 
medicine” techniques without any holistic cure. The recommendations to solve one 
problem may leave the whole system more disturbed than it was to begin with. 
 In recent decades, the “system approach” to problems in the social and behavioral 
sciences has found its place next to the older reductionist methods, which seem more 
appropriate to the physical sciences. Basically, a system is an abstract model for a real-
life structure such as nervous system of a human, the government of a city, the 
transportation network of a state, or the ecosystem of the marshlands of New Jersey. In 
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systems language we evaluate the impact of various components of a system on the entire 
system and find their priorities.  
 Some people have defined a system in terms of the interactions of its parts. But a 
much richer definition of a system in terms of its structure, its functions, the objectives 
set for it in the design from the perspective of a particular individual or group (hence the 
possibility for conflict), and finally the environment (the larger surrounding system) of 
which it is a subsystem. For practical purposes a system is often in terms of its 
 

(1) Structure according to the physical, biological, social, or even psychological 
arrangement of its parts and according to the flow of material and people which 
define the relations and dynamics of the structure, and 

(2) Function according to what functions the components of the system, whether 
animate or inanimate, are meant to serve; what these functions are and what 
objectives they are intended to fulfill; what higher objectives these objectives are 
part of (leading up to an overall purpose of the system); whose objectives are 
being satisfied; what conflict among individuals may have to be resolved. 

 
Actually, the structure and function of a system cannot be separated. They are the 

reality we experience. What we would like to do is look at them simultaneously. In doing 
this, the structure serves as a vehicle for analyzing the function. The functioning modifies 
the dynamics of the structure. 

A hierarchy is an abstraction of the structure of a system to study the functional 
interactions of its components and their impacts on the entire system. This abstraction can 
take several related forms, all of which essentially descend from an apex (an overall 
objective), down to sub-objective, down further to forces which affect these sub-
objectives, down to the people who influence these forces, down to objectives of the 
people and then to their policies, still further down to the strategies, and finally, the 
outcomes which result from these strategies. It is worth noting that there is a degree of 
invariance to this structure whose highest levels represent the environmental constraints 
and forces descending to levels of actors, their objectives, the functions of the system, 
and, finally, to its structure which may be modified or controlled.  

Two questions arise in the hierarchical structuring of systems: 
 

(1) How do we structure the functions of a system hierarchically? 
(2) How do we measure the impacts of any element in the hierarchy? 

 
There are also relevant questions of optimization with which we may wish to deal. They 
are meaningful after we have answered the above questions. We shall have a number of 
things to say later about the structure of hierarchies. 
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1-2 MEASUREMENT AND THE JUDGMENTAL PROCESS 
 
Let us examine three related problems which have interesting applications. The first is 
concerned with measurement. Suppose we are given a set of objects which are all 
sufficiently light and can be lifted by hand. In the absence of a weighting instrument we 
wish to estimate their relative weights. One way could be to guess the weight of each 
object directly in pounds, for example, by lifting it (perhaps using the lightest one as 
standard), comparing the whole class, and then dividing the weight of each by the total to 
gets its relative weight. Another method which utilizes more of the available information 
in the experiment is to compare the objects in pairs, by lifting one and then lifting another 
and then back to the first and then again the second and so on until we have formulated a 
judgment as to the relative weight (ratio) of each pair of objects. The problem then is to 
adopt a meaningful scale for the pair comparisons. This second process has the advantage 
of focusing exclusively on two objects at a time on how they relate to each other. It also 
generates more information than is really necessary since each object is methodically 
compared with every other.  
 For problems where there is no scale to validate the result, the pairwise 
comparison process can prove to be an asset, because although the steps are more 
numerous, they are simpler than in the first process. 
 We note that consistency in any kind of measurement cannot be taken for granted. 
All measurement, including that which makes use of instruments, is subject to 
experimental error and to error in the measuring instrument. A serious effect of error is 
that it can and often does lead to inconsistent conclusions. A simple example of the 
consequence of error in weighting object is to find that A is heavier than B, and B is 
heavier than C but C is heavier than A. This can happen particularly when the weights of 
A, B and C are close, and the instrument is not fine enough to distinguish them. Lack of 
consistency may be serious for some problems but not for others. For example, if the 
objects are two chemicals to be mixed together in exact proportion to make a drug, 
inconsistency may mean that proportionately more of one chemical is used than the other, 
possibly leading to harmful results in using the drug. 
 But perfect consistency in measurement, even with the fines instruments, is 
difficult to attain in practice; what we need is a way of evaluating how bad it is for a 
particular problem.  
 By consistency we mean here not merely the traditional requirement of the 
transitivity of preferences (if apples are preferred to oranges and oranges are preferred to 
bananas, then apples must be preferred to bananas), but the actual intensity with which 
the preference is expressed transits through the sequence of objects in comparison. For 
example, if apples are twice as preferable as oranges and oranges are three times as 
preferable as bananas, then apples must be six times as preferable as bananas. This is 
what we call cardinal consistency in the strength of preference. Inconsistency is a 
violation of proportionality which may or may not entail violation of transitivity. Our 
study of consistency demonstrates that it is not whether we are inconsistent on particular 
comparisons that matter, but how strongly consistency is violated in the numerical sense 
for the overall problem under study. An exact definition f a numerical index for 
consistency will be given later.  
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 Note that there need be no relationship between consistency and tests of how 
closely a measurement duplicates reality. Thus, an individual may have excellent 
consistency but not know anything about the real situation. Usually, though, the more a 
person knows a situation, the more consistent one would expect him to be in representing 
it. Pairwise comparisons enable one to improve consistency by using as much 
information as possible. To represent reality with measurements, we assume the 
following:  
 

(1) At least physical “reality” is consistent and can be counted on to yield similar 
results from trial under controlled conditions. 

(2) Judgment must strive towards consistency. Consistency is a desirable objective. It 
is necessary for capturing reality but not sufficient. An individual may have very 
consistent ideas which do not correspond to the “real” world situation. 
Consistency is a central question in concrete measurement, in judgments, and in 
the thinking process. 

(3) To obtain better estimates of reality, we should channel our impressions. Feelings, 
beliefs in a systematic way in providing judgments. The object is to enhance 
objectivity and downplay too much subjectivity. 

(4) To get good results (which correspond to reality) from our feelings we need: (a) 
to use mathematics to construct the right kind of theory to produce numerical 
scales of judgments and other comparative measurements, (b) to find a scale 
which discriminates between our feelings, whose values have some kind of 
regularity so that we can easily rely on making the correspondence between our 
qualitative judgments and these numbers, (c) to be able to reproduce the 
measurement of reality which we have already learned in physics and economic, 
and (d) to be able to determine how inconsistent we are.  

 
In passing, we note that measuring instruments are not and cannot be means of 

absolute measurement, but they have been the object of scientific study and analysis and 
have been constructed with consistent behavior in mind, and have come to serve as 
vehicles in other scientific research. If these instruments are for any reason inadequate 
(and one can always devise an experiment for which there is no satisfactory instrument 
for measurement) then we must keep inventing new instruments. It is not difficult to 
imagine some important experiment for which no sufficiently fine instrument can ever be 
found from which consistent answers can always be obtained. In that case entire problem 
is shifted to the study of consistency and evaluating the seriousness of inconsistency. The 
maximum eigenvalue approach to estimate ratio scales which we study here gives rise to 
a measure of departure from consistency enabling comparison between informed and 
random or unrelated judgments and serves as a vehicle for estimating departure from the 
underling ratio scale.  

In the measurement of physical quantities it is usually possible to set down a 
dimension or property such as length, which remains the same in time and space, and 
devise instruments to measure this property. Naturally it would be more difficult to make 
an instrument which adjusts its scale to changing circumstances before making a 
measurement. For example, length and mass vary at speeds near that of light and an 
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instrument that directly measured these properties at near the speed of light may require 
some kind of variable scale.  

This is precisely the problem in the social science. When we deal with properties 
that change not only in time and space but also (and far more seriously) in conjunction 
with other properties, their meaning also changes. We cannot improvise universal scales 
for social events. Social phenomena are more complicated than physical phenomena 
because they are harder to replicate in abundance. Too much control must be imposed 
and controls in themselves often destroy the very social behavior one is trying to 
measure. Our judgments must be sufficiently flexible to take into consideration the 
contextual setting of the property being measured.  

Consider the problems of measuring achievement and happiness. Both may be 
called relative properties in that the unit of measurement may have to be adjusted to 
compare, for example, the degree of happiness in one setting with that in another. As we 
shall see, it is possible to do this with the pairwise comparison technique. A powerful 
instrument which varies its scales with the relativeness of the circumstance can be the 
human mind itself, particularly if it turns out that its measurement is sufficiently 
consistent to satisfy the requirements of the particular problem. The intensity of our 
feelings serves as a scale-adjustment device to put the measurement of some objects on a 
scale commensurate with that of other objects. In fact, as the mind improves its precision, 
it becomes the required tool for relative measurement as no instrument except our very 
personal designed one (our own mind) can be made to suit our particular experience and 
viewpoint. A group must coordinate their outlook to produce results acceptable (in some 
sense) to them.  

We now return to our second problem, which is concerned with providing greater 
stability and invariance to social measurement. Granted that dimensions or properties are 
variable, how do we measure the impact of this variability on still other higher level 
properties, and, in turn, these in still higher ones. It turns out that for a very wide class of 
problems we can usually identify overall properties (or one property), which remain the 
same sufficiently long, i.e., for the duration of an experiment. This approach leads us to 
the measurement and analysis of impacts in hierarchies as discussed earlier.  

We can then study the invariance of the derive measures by reorganizing the 
hierarchy in different ways. The results of the measurement may be used to stabilize the 
system or to design new goal-oriented systems. They can also be used (as priorities) to 
allocate resources.  

Here again, as in the monetary system described earlier, the measurements derive 
from judgments based on experience and understanding. These measurements are 
obtainable only from relative comparison and not in an absolute way.  

Our third problem is to set up the right conditions for people to structure their 
problems and to provide the necessary judgment to determine their priorities. 

We assume that the pairwise comparisons are obtained by direct questioning of 
people (a single individual if the problem is his sole concern) who may or may not be 
experts, but who are familiar with the problem. A central point in our approach is that 
people are often inconsistent, but priorities must be assigned and things done despite 
inconsistency.  

We also assume that all the alternatives are specified in advance, and that not all 
the variables need to be under the control of each of the parties involve in affecting the 
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outcomes of the alternatives. It is desirable to know if the priority of an alternative is due 
to the influence of a more powerful outside party. The object may be to improvise 
policies and establish communication to influence that party to produce a more favorable 
outcome to the stakeholders. The stability of the results due to changes in judgment 
evaluation is of interest.  

The expressed preferences are assumed to be deterministic rather than 
probabilistic. Thus, a preference remains fixed and is not contingent upon other factors 
not included in the problem.  

If several people are involved, they can assist each other in sharpening their 
judgments and also divide the task to provide the judgments in their areas of expertise, 
thus complementing each other. They may attempt consensus. Failing that, a bargaining 
process, particularly for people in a dispute, enables one group to yield when the pair 
being compared is of no significance to them and in return ask for similar concessions 
from the opposition when that party’s interest is involved. When of several individuals 
does his own evaluations, the separate results may be compared from the standpoints of 
their individual utilities to obtain a synthesis performed by an outside party of what they 
would do jointly.  

Still another way to use the method would be to have each member of a group 
with conflicting interests develop the outcome using his judgments and assuming 
judgments for the other parties, note the outcome, and compare it (perhaps with the aid of 
a computer) with what the others arrive at. The process reveals what outcome each party 
is exerting pressure to achieve. The crucial upshot of this is to induce cooperation.  

 
 

1-3 HIERARCHIES 
 
Very often, as one analyzes the structure if interest, the number of entities and their 
mutual relations increases beyond the ability of the researcher to comprehend distinct 
pieces of information. In such cases, the larger the system is broken up into subsystems, 
almost as the schematic of a computer consists of blocks and their interconnections, with 
each block having a schematic of its own. 
 Figure 1-1 represents a very rough representation of the various subsystems 
which, in their collection and interrelations, make up the trade system of a country today. 
We will be treating systems like this (which have cycles) in a later chapter. 
 Now let us turn to the more straightforward hierarchical representation of 
problems.  

A hierarchy is a particular type of system, which is based on the assumption that 
the entities, which we have identified, can be grouped into disjoint sets, with the entities 
of one group influencing the entities of only one other group (in a separate chapter we 
study the interaction between several groups), and being influenced by the entities of only 
one other group. The elements in each group (also called level, cluster, stratum) of the 
hierarchy are assumed to be independent. If there is dependence among them we study 
independence and dependence separately and combine the two as in Chap. 6. The 
following is an elementary example of a hierarchy.  
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Country's sectors

(1) Federal government

(2) Population

(3) Natural resources

(4) Welfare and social security

(5) Public housing

(6) Transportation network

States subsystem

Cities Local industry Armed Forces

(1) Public services (1) Availability of labor (1) Level of

(2) Cultural centers (2) State tax laws     sophistication

(3) Local government (3) State support to (2) Size

(4) Climate       industry (3) Lobby in

(5) Population (4) Energy       government

(6) Transport system

(7) Education

(8) Ability to attract Industry

     Federal funds (1) Type of government

(2) Strong private sector

      leadership

(3) Transportation

State population (4) Government military

(1) Participation in local        expenditure

     government (5) Corporate taxes

(2) Strong political (6) Export potential

      leadership (7) Country's natural 

(3) Housing       resources

(4) Security (8) Labor

(5) Recreation

Agriculture International trade

(1) Farm population (1) Raw materials

(2) Irrigation (2) Precision goods

(3) Energy (3) Manufactured goods

(4) Size of markets (4) Food

(5) Proximity to markets

(6) Mechanization

Figure 1-1
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  The welfare of the city-states of medieval Europe depended mostly on the 
strength and ability of their rules. The general structure of a city-state may be represented 
in the hierarchical form shown in Fig. 1-2.  

Level 1 City-state

Ruler

Level 2 Civic government Army

Function Strength

Level 3 Agriculture  Trade Size of Cottage

Population industry

Figure 1-2

  
We have grouped agriculture, trade, size of population, and cottage industry into 

one set, or level, because in this model they share the property of being the most 
fundamental factors in the economic strength of the city-state. They determine the 
strength of the civic government function, and the army; these two, in turn, influence the 
welfare of the city-state. 
 Several observations are in order. Obviously, the model is too simplistic; many 
more entities could be identified, and more levels. This we can do depending on what 
question we are attempting to answer. The model can easily expand in complexity and 
become tedious to deal with. Thus we should construct the hierarchy carefully, choosing 
between faithfulness to reality and our understanding of the situation from which we can 
obtain answers. Experience has shown that even seemingly too rough an idealization can 
yield significant insights.  
 Second, we have not incorporated the evident fact that not only is the civic 
government influenced by trade, for instance, but civic government also has its impact on 
trade. This “reverse” impact, or feedback, while often important, is not as significant as it 
may seem at first. We have analyzed several problems first without taking feedback into 
account, and then with feedback. The first results were sufficiently close to allow the 
assumption that a well-constructed hierarchy will, in most cases, be a good model of 
reality even if possible feedback relations are ignored. However, as the initial example of 
this section indicates, some situations may be so complex that their representation by a 
hierarchy may be deceptively simplistic.  
 Perhaps another example will further clarify the notion of a hierarchy. The reality 
we are interested in is a college; wee seek to determine the scenario which will most 
likely secure the continued existence of the college. Let us call the Focus the welfare of 
the college. It is influenced by the following forces: instruction, social life, spirit, 
physical plant, and extracurricular activities. These forces are determined by the 
following actors: academic administration, non-academic administration, faculty, 
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students, and trustees. We omit the obvious feedback between forces and actors. The 
various actors have certain objectives; for instance, the faculty may want to keep their 
jobs, grow professionally, offer good instruction, or, the students may be interested in 
obtaining a job, getting married, becoming educated, etc. Finally, there are various 
possible scenarios, such as: status quo, emphasizing vocational training, or continuing 
education, or becoming a bible school. The scenarios determine the likelihood of 
achieving objectives, the objectives influence the actors, and the actors guide the forces, 
which, finally, impact on the welfare of the college. Thus we have the hierarchy of Fig. 1-
3. 

Focus Welfare of the college

Forces Instruction  Social life Spirit Physical Extracurricular

plant activities

Actors Academic Non-academic Faculty Students Trustees

administration administration

Objectives Keeps jobs Obtaining job

Grow professionally Getting married

Good instruction Becoming educated

Scenarios Status quo Emphasize vocational Continuing Becoming

training education bible school

Figure 1-3

 
 Let us give this concept of hierarchy a closer look. 
 We have a tendency to think that hierarchies were invented in corporations and 
governments to take care of their affairs. This is not so. These hierarchies are basic to the 
human way of breaking reality into clusters and sub clusters. Here is a brief eloquent 
expression in defense of this point of view.  
 
“The immense scope of hierarchical classification is clear. It is the most powerful method of classification 
used by the human brain-mind in ordering experience, observations, entities and formation. Though not yet 
definitely established as such by neurophysiology and psychology, hierarchical classification probably 
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represents the prime mode of coordination or organization (i) of cortical processes, (ii) of their mental 
correlates, and (iii) of the expression of these in symbolisms and languages. The use of hierarchical 
ordering must be as old as human thought, conscious and unconscious…” (Whyte, 1969). 
 
 The basic problem with a hierarchy is to seek understanding at the highest levels 
from interactions of the various levels of the hierarchy rather than directly from the 
elements of the levels. Rigorous methods for structuring systems into hierarchies are 
gradually emerging in the natural and social sciences and in particular, in general systems 
theory as it relates to the planning and design of social systems.  

Direct confrontation of the large and the small is avoided in nature through the 
use of a hierarchical linkage (see Simon, 1962; Whyte et al., 1969). Conceptually, the 
simplest hierarchy is linear, rising from one level to an adjacent level. For example, in a 
manufacturing operation there is a level of workers dominated by a level of supervisors, 
dominated by a level of managers, on to vice presidents and presidents. A nonlinear 
hierarchy would be one with circular arrangements so that an upper level might be 
dominated by a level as well as being in a dominant position (e.g., in case of flow of 
information). In the mathematical theory of hierarchies we develop a method for 
evaluating the impact of a level on an adjacent upper level from the composition of the 
relative contributions (priorities) of the elements in that level with respect to each 
element of the adjacent level. This composition can be extended upwards through the 
hierarchy. 

Each elements of a hierarchy may belong functionally to several other different 
hierarchies. A spoon may be arranged with other spoons of different sizes in one 
hierarchy or with knives and forks in a second hierarchy. For example, it may be a 
controlling component in a level of one hierarchy or it may be simply unfolding of higher 
or lower order functions in another hierarchy. 
 
 
Advantages of Hierarchies 

1) Hierarchical representation of a system can be used to describe how changes in 
priority at upper levels affect the priority of elements in lower levels. 

2) They give great detail of information on the structure and function of a system in 
the lower levels and provide an overview of the actors and their purposes in the 
upper levels. Constraints on the elements on a level are best represented in the 
next higher level to ensure that they are satisfied. For example, nature may be 
regarded as an actor whose objectives are the use of certain material and subject at 
certain laws as constraints. 

3) Natural systems assembled hierarchically, i.e. through modular construction and 
final assembly of modules; evolve much more efficiently than those assembled as 
a whole. 

4) They are stable and flexible; stable in that small changes have small effect and 
flexible in that additions to a well-structured hierarchy do not disrupt the 
performance.  
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How to Structure a Hierarchy 
 
 In practice there is a no set procedure for generating the objectives, criteria, and 
activities to be included in a hierarchy or even a more general system. It is a matter of 
what objectives we choose to decompose the complexity of that system. 
 One usually studies the literature for enrichment of ideas, and often, by working 
with others, goes through a freewheeling brainstorming session to list all concepts 
relevant to the problem without regard to relation or order. One attempts to keep in mind 
that the ultimate goals need to be identified at the top of the hierarchy; their sub-
objectives immediately below; the forces constraining the actors still below that. This 
dominates a level of the actors themselves, which in turn dominates a level of their 
objectives; below which is a level of their policies, and at the bottom is a level of the 
various possible outcomes (scenarios). (Refer to the college hierarchy, in Fig. 1-3). This 
is the natural form that planning and conflict hierarchies take. When designing a physical 
system, the policies can be replaced by methods of construction. This needs to be 
followed by several intermediate levels culminating in alternative systems. Considerable 
criticism and revision may be required before a well-defined plan is formulated.  
 There is sufficient similarity between problems that one is not always faced with a 
completely new task in structuring a hierarchy. In a sense the task for the experienced 
becomes one of identifying the different classes of problems which arise in life systems. 
There are such a variety of these that the challenge is to become versed with the ideas and 
concepts which people, living within such a system, encounter. This requires intelligence, 
patience, and the ability to interact with others to benefit from their understanding and 
experience. 
 
 
The overall purpose and other criteria if a hierarchy in socio-political applications may not be unique. They 
depend on what to examine. This situation is not peculiar to hierarchies and is intrinsic to life situations. 
For example, in chess we have what is known as the constant (a priori) values of the pieces useful in the 
opening game. There are also the current (a posteriori) or empirical values of the pieces as they engage in 
the confrontations of the end game. Both types of values may be obtained under the following two 
assumptions (1) in terms of how many squares they control when places on each square and (2) in terms of 
their being able to check the king without being captured. We have the following relative values for the 
knight, bishop, rock, and queen (ball, 1947, p. 162). 
 
   Case 1   Case 2 
   Controlling squares Threatening king 
Constant value  3, 5, 8, 13  12, 13, 24, 37 
Current value  350, 360, 540, 1000 12, 13, 18, 33 
(empirically) 
 
 Although the results in Case 2 are close, those in case 1 are different. The analysis gives rise to the 
question: “What really is the relative worth of pieces in chess?” Obviously there is not a unique answer. 
However, in terms of relative orders of magnitude the answer may be acceptable. 
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Our sensory perception operates in specialized ways to serve our survival needs. 

Therefore, however we try to be objective in interpreting experience, our understanding is 
perceived and abstracted in a very subjective way, normally to serve our needs! Our 
survival seems to be a meaningful basis for devising purposes. Shared subjectivity in 
interpretation is actually what we mean by objectivity. Thus the hierarchies we form are 
objective by our own definition because they relate to our collective experience. 

A valuable observation about the hierarchical approach to problem solving is that 
the functional representation of a system may differ from person to person, but people 
usually agree on the bottom level of alternative actions to be taken and the level above it, 
the characteristics of these actions. For example, the bottom level may consist of alternate 
traffic routes which can be taken between two points, and the level of characteristics may 
be include travel time, bottlenecks, potholes, safety, and the like. Table 1-1 indicates 
levels for different types of hierarchy must always be comfortable that the levels relate 
naturally to each other. If necessary a level may be expanded into two levels or more 
completely taken out.  

 
 

Table 1-1 The general format for hierarchies and decomposition

Environmental

Generic for a constraints Perspective Objectives of

system and forces (actors) actors Policies Outcomes Resultant outcome

Hierarchy for

Conflict Constraints Actors Objective Policies Outcomes Compromise or stable

outcome

Forward or Present Other actors Other actors Policies Scenarios Logical future

projected organizational objectives

planning policies

Backward or Organizational Other actors Other actor Other actor Scenarios Desired future

idealized response objectives policies

planning policies

Portfolio Cost- Criteria Sub-criteris Objectives Policies Options Best option or mix

benefit

Analysys

Investment choice Risk level Major forces Criteria Problem areas Specific projects

Prediction Risk level Major forces Criteria Problem areas Categories

  
1-4 PRIORITY IN HIERARCHIES 
 
A hierarchy, as presented in the last section, is a more or less faithful model of a real-life 
situation. It represents our analysis of the most important elements in the situation and of 
their relationships. It is not a very powerful aid in our decision-making or planning 
process. What we yet need is a method to determine the potency with which the various 
elements in one level influence the elements on the next higher level, so that we may 
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compute the relative strength of the impacts of the elements of the lowest level on the 
overall objectives.  
 By way of clarification, let us return to the college hierarchy of the last section. 
As stated here, we are interested in “the scenario which will most likely secure the 
continued existence” of college. In order to determine this scenario, we begin by finding 
the strength of importance of the forces with respect to the focus. Then, for each force in 
turn, we determine the strength of influence of the actors on that force. Simple 
computation will give us the strength of influence of the actors on the focus. Then, we 
find the strength of the objectives for each actor; influence of the actors on the focus. 
Then, we find the strength of the objectives for each actor; and finally, we determine, 
with respect to each objective, the efficacy of the various scenarios in assuring that 
objective. Repetition of the computation mentioned above several times will yield the 
“best” scenarios.  

How, then, do we determine the “strengths”, or the priorities, of the elements in 
one level relative to their importance for an element in the next level. At this point, we 
will present only the most elementary aspects of our method. The psychological 
motivation for our approach and the mathematical foundation will have to wait.  
 A few terms must be introduced first. A matrix is an array of numbers, arranged 
in a rectangle, as in  

  

1 0 2.9 6
3 3.5 7 1
2.1 2 0 1.1

 
 
 A horizontal sequence of numbers in a matrix is called a row, a vertical one is 
called a column. A matrix consisting of one row or one column only is called a vector. A 
matrix is called a square matrix if it has an equal number of rows and columns. It is 
useful to note that associated with a square matrix are its eigenvectors and corresponding 
eigenvalues. The reader need not be discouraged with these concepts as we will be 
developing and explaining them at length in other chapters. 
 Our method can now be described as follows. Given the elements of one level, 
say, the fourth, of a hierarchy and one element, e, of the next higher level, compare the 
elements of level 4 pairwise in their strength of influence on e. Insert the agreed upon 
numbers, reflecting the comparison, in a matrix and find the eigenvector with the largest 
eigenvalue. The eigenvector provides the priority ordering, and the eigenvalue is a 
measure of the consistency of the judgment.  
 Let us determine a priority scale in the following example. Let A, B, C, D stand 
for chairs, arranged in a straight line, leading away from a light. We develop a priority 
scale of relative brightness for the chairs. Judgments will be obtained from an individual 
who stands by the light source and is asked, for example, “How strongly brighter is chair 
B than chair C?” He will then give one of the numbers from comparison described in the 
table and this judgment will be entered in the matrix on position (B, C). By convention, 
the comparison of strength is always of an activity appearing in the column on the left 
against an activity appearing in the row on the top. We then have the pairwise 
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comparison matrix with four rows and four columns (a 4x4 matrix) 

 

Brightness A B C D
A
B
C
D

 
 The “agreed upon” numbers are the following. Given elements A and B; if  
 
A and B are equally important, insert 1 
A is weakly more important than B, insert 3 
A is strongly more important than B, insert 5 
A is demonstrably or very strongly more important than B, insert 7 
A is absolutely more important than B, insert 9 
in the position (A, B) where the row of A meets the column of B. 
 
An element is equally important when compared with itself, so where the row of and 
column of A meet in position (A, A) insert 1. Thus the main diagonal of matrix must 
consist of 1’s, Insert the appropriate reciprocal 1, 1/3, …., or 1/9 where the column A 
meets the row B, i.e., position (B, A) for the reverse comparison of B with A. The 
numbers 2, 4, 6, 8 and their reciprocals are used to facilitate compromise between slightly 
differing judgments. We also use rational numbers to form ratios from the above scale 
values when it is desired to force consistency on the entire matrix from a few judgments, 
i.e., a minimum of n-1. 
 
In general, what we mean by being consistent is that when we have a basic amount of raw data, all other 
data can be logically deduced from it. In doing pairwise comparison to relate n activities so that each one is 
represented in the data at least once, we need n-1 pairwise comparison judgments. From them all other 
judgments can be deduced simply by using the following kind of relation: if activity A1 is 3 times more 
dominant than activity A2 and activity A1 is 6 times more dominant than activity A3 then A1 = 3A2 and A1 = 
6A3. It should follow that 3A2 = 6A3 or A2 = 2A3 and A3 =1/2A2. If the numerical value of the judgment in 
the (2,3) position were different from 2 then the matrix would be inconsistent. This happens frequently and 
is not a disaster. Even if one has the whole real numbers to use for judgments, unless he occupies his 
attention methodologically to build up the judgments from n-1 basic ones, his numbers are not likely to be 
consistent. In addition, for most problems it is very difficult to identify n-1 judgments, which relate all 
activities, and of which one is absolutely certain. 
 In turns out that the consistency of a positive reciprocal matrix is equivalent to the requirement 
that its maximum eigenvalue max should be equal to n. It is also possible to estimate the departure from 
consistency by the difference max-n divided by n-1. We note that max n is always true. How bad our 
consistency may be in a given problem may be estimated by comparing our value of (max-n)/(n-1) with its 
value from randomly chosen judgments and corresponding reciprocals in the reverse positions in a matrix 
of the same size. We have a table for such entries on page 21 from which the figures may be taken. 
Consistency will be dealt with more precisely in later chapters. 
 
 Let us now return to our chair of brightness example. There are sixteen spaces in 
the matrix for our numbers. Of these, four are predetermined, namely, those in the 
diagonal, (A, A), (B, B), (C, C), (D, D), and have the value 1, since, for example, chair A 
has the same brightness as itself. Of the remaining twelve numbers, after the diagonal is 
filled in, we need to provide six, because the other six are reverse comparisons and must 
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be reciprocals of the first six. Suppose the individual, using the recommended scale, 
enters the number 4 in the (B, C) position. He thinks chair B is between weakly and 
strongly brighter than chair C. Then the reciprocal value ¼ is automatically entered in the 
(C, B) position. It is not mandatory to enter a reciprocal, but it is generally rational to do 
so. 
 After the remaining five judgments have been provided and their reciprocals also 
entered, we obtain for the complete matrix 

  

Brightness A B C D
A 1 5 6 7
B 1/5 1 4 6
C 1/6 1/4 1 4
D 1/7 1/6 1/4 1

 
 The next step consists of the computation of a vector of priorities from the given 
matrix. In mathematical terms the principal eigenvector is computed, and when the 
normalized becomes the vector of priorities. We shall see in the next chapter that the 
relative brightness of the chairs expressed by this vector satisfies the inverse square law 
of optics. In the absence of a large scale of computer to solve the problem exactly, crude 
estimates of that vector can be obtained in the following four ways: 
 

(1) The crudest Sum the elements in each row and normalize by dividing each sum by 
the total of all the sums, thus the results now add up to unity. The first entry of the 
resulting vector is the priority of the first activity; the second of the second 
activity and so on. 

(2) Better Take the sum of the elements in each column and form the reciprocals of 
these sums. To normalize so that these numbers add to unity, divide each 
reciprocal by the sum of the reciprocals. 

(3) Good Divide the elements of each column by the sum of that column (i.e., 
normalize the column) and then add the elements in each resulting row and divide 
this sum by the number of elements in the row. This is a process of averaging 
over the normalized columns. 

(4) Good Multiply the n elements in each row and take the nth root. Normalize the 
resulting numbers. 

 
A simple illustration which shows that methods (1), (2), and (3) produce the 
expected answer uses an urn with 3 white (W), 2 black (B), and red (R) balls. The 
probabilities of drawings a W, B, or R are, respectively, ½. 1/3. 1/6. It is easy to 
see that any of the first three methods gives these probabilities when applied to 
the following consistent pairwise comparison matrix. Method (4) also gives this 
result. 

    

W B R
W 1 3/2 3
B 2/3 1 2
R 1/3 1/2 1
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It is important to note that these methods give different results for the general case where 
a matrix is not consistent. 
 Let us now apply the different methods of estimating the solution to the chair 
example. 
 Applying method (1), the sum of the rows of this matrix is a column vector 
which, to save space, we write as the row (19.00, 11.20, 5.42, 1.56). The total sum of the 
matrix is given by summing these vector components. Its value is 37.18. If we divide 
each components of the vector by this number we obtain the column vector of priorities, 
again written as row, (0.51, 0.30, 0.15, 0.04) for the relative brightness of chairs A, B, C 
D, respectively. 
 Applying method (2), the sum of the columns of this matrix is a row vector (1.51, 
6.43, 11.25, 18.00). The reciprocals of these sums are (0.66, 0.16, 0.09, 0.06), which 
when normalized become (0.68, 0.16, 0.09, 0.06). 
 Applying method (3) we normalize each column (add its components and divide 
each component by this sum) obtaining the matrix 

   

0.66 0.78 0.53 0.39
0.13 0.6 0.36 0.33
0.11 0.04 0.09 0.22
0.09 0.03 0.02 0.66

 
The sum of the rows is the column vector (2.36, 0.98, 0.46, 0.20) which when averaged 
by the sample size of 4 columns yields the column vector of priorities (0.590, 0.254, 
0.115, 0.050). 
 Method (4) gives (0.61, 0.24, 0.10, 0.04). 
 The exact solution to the problem, as will be described later in the book, is 
obtained by raising the matrix to arbitrarily large powers and dividing the sum of each 
row by the sum of the elements of the matrix. To two decimal places it is given by (0.61, 
0.24, 0.10, 0.05).  
 By comparing these results we note that the accuracy is improved from (1) to (2) 
to (3), although they increase in complexity of computation. If the matrix were consistent 
all these four vectors would be the same. Method (4) only gives a very good 
approximation in the inconsistent case. 
 If we may assume that the reader knows how to multiply a matrix by vector, we 
can introduce a method for getting a crude estimate of consistency. 
 We multiply the matrix of comparisons on the right by the estimated solution 
vector obtaining a new vector. If we divide the first component of this vector by the first 
component of the estimated solution vector, the second component of the new vector by 
the second component of the estimated solution vector and so on, we obtain another 
vector. If we take the sum of the components of this vector and divide by the number of 
components we have an approximation to a number max (called the maximum or 
principal eigenvalue) to use in estimating the consistency as reflected in the 
proportionality of preference. The closer max is to n (the number of activities in the 
matrix) the more consistent is the result.  
 As will be clear from our theoretical discussion in a later chapter, deviation from 
consistency may be represented by (maxn)(n-1) which we call the consistency index 
(C.I). 
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 We shall call the consistency index of a randomly generated reciprocal matrix 
from the scale 1 to 9, with reciprocals forced, the random index (R.I). At Oak Ridge 
National Laboratory, colleagues (see Chap. 3) generated an average R.I for matrices of 
order 1-15 using a sample size of 100. One would expect the R.I. to increase as the order 
of the matrix increases. Since the sample size was only 100, there remained statistical 
fluctuations in the index from one order to another. Because of these, we repeated the 
calculations at the Wharton School for a sample size 500 up to 11 by 11 matrices and 
then used the Oak Ridge results for n = 12, 13, 14, 15. The following table gives the 
order of the matrix (first row) and the average R.I. (second row) determined as described 
above. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

 
The ratio of C.I. to the average R.I. for the same matrix is called the consistency ratio 
(C.R.). A consistency ratio of 0.10 or less is considered acceptable. 
 To illustrate our approximate calculation of C.I. with an example we use the 
above matrix and the third column vector derived by method (3) to find max. We had 
(0.59, 0.25, 0.11, 0.05) for the vector of priorities. If we multiply the matrix on the right 
by this vector we get the column vector (2.85, 1.11, 0.47, 0.20). If we divide 
corresponding components of the second vector by the first we get (4.83, 4.44, 4.28, 
4.00). Summing over these components and taking the average gives 4.39. 
 This gives (4.39 – 4)/3 = 0.13 for the C.I. To determine how good this result is we 
divide it by the corresponding value R.I = 0.90. The consistency ratio (C.R.) is 
0.13/0.90= 0.14 which is perhaps not as close as we would like to 0.10. 
 These comparisons and computations establish the priorities of the elements of 
one level of a hierarchy with respect to one element of the next level. If there are more 
than two levels, the various priority vectors can be combined into priority matrices, 
which yield one final priority vector for the bottom level.  
 
 
1-5 INTUITIVE JUSTIFICATION OF THE METHOD 
 
Assume that n activities are being considered by a group of interested people. We assume 
that the group’s goals are: 
 

(1) To provide judgments on the relative importance of these activities; 
(2) To insure that the judgments are quantified to an extent which also permits a 

quantitative interpretation of the judgments among all activities. 
 
Clearly, goal (2) will require appropriate technical assistance. 
 Our goal is to describe a method of deriving, from the group’s quantified 
judgment (i.e., from the relative values associated with pairs of activities), a set of 
weights to be associated with individual activities; in a sense defined below, the weights 
should reflect the group’s quantified judgments. What this approach achieves is to put the 
information resulting from (1) and (2) into usable form without deleting information 
residing in the qualitative judgments.  
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 Let C1, C2, …., Cn be the set of activities. The quantified judgments on pairs of 
activities Ci , Cj are represented by an n-by-n matrix  
 
   A=(aij),  (i, j = 1, 2, …, n) 

 
The entries aij are defined by the following entry rules. 
Rule 1. If aij = , then aij = 1/,   0. 
Rule 2. If Ci is judged to be of equal relative importance as Cij, then aij = aji = 1; in 
particular, aii = 1 for all i.   
 
Thus the matrix A has the form 
 

 A = 

1/1/1

1/1

1

21

212

112









nn

n

n

aa

aa

aa

 

 
 Having recorded the quantified judgments on pairs (Ci, Cj) as numeric entries aij 
in the matrix A, the problem now is to assign to the n contingency C1, C2, …, Cn a set of 
numerical weights w1, w2, …., wn that would “reflect the recorded judgments”. 
 In order to do so, the vaguely formulated problem must first be transformed into a 
precise mathematical one. This essential, and apparently harmless, step is the most 
crucial one in any problem that requires the representation of a real-life situation in terms 
of an abstract mathematical structure. It is particularly crucial in the present problem 
where the representation involves a number of transitions that are not immediately 
discernible. It appears, therefore, desirable in the present problem to identify the major 
steps in the process of representation and to make each step as explicit as possible in 
order to enable the potential user to form his own judgment on the meaning and value of 
the method in relation to his problem and his goal. 
 The major question is the one concerned with the meaning of the vaguely 
formulated condition in the statement of our goal: “these weights should reflect the 
group’s quantified judgments.” This presents the need to describe in precise, arithmetic 
terms, how the weights, wi should relate to the judgments aij: or, in other words, the 
problem of specifying the conditions we wish to impose on the weights we seek in 
relation to the judgments obtained. The desired description is developed in three steps, 
proceeding from the simplest special case to the general one. 
 
Step 1 Assume first that the “judgments” are merely the result of precise physical 
measurements. Say the judges are given a set of pebbles, C1, C2, …, Cn and a precision 
scale. To compare C1 with C2, they put C1 on a scale and read off its weight –say, w1-305 
grams. They weight C2 and find w2 = 244 grams. They divide w1 by w2, which is 1.25. 
They pronounce their judgment, “C1 is 1.25 times as heavy as C2 and record it as a12 = 
1.25.  
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Thus, in this ideal case of exact measurement, the relations between the weights w1 and 
the judgments aij are simply given by 
 

  ij
j

a
w

w
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However, it would be unrealistic to require these relations to hold in the general case. 
Imposing these stringent relations would, in most practical cases, make the problem of 
finding the wi (when aij are given) unsolvable. First, even physical measurements are 
never exact in a mathematical sense; and, hence, allowance must be made for deviations; 
and second, because in human judgments, these deviations are considerable larger. 
 
Step 2  In order to see how to make allowance for deviations, consider the ith row in the 
matrix A. The entries in that row are 
  ai1, ai2, ….,  ain  

 
In the ideal (exact) case these values are the same as the ratios  
 

  
n

i

j

iii

w

w

w

w

w

w

w

w
,,,,,

21

  

 
Hence, in the ideal case, if we multiply the first entry in that row by w1, the second entry 
by w2, and so on, we would obtain 
 

,1
1

i
i ww

w

w
  in

n

i
ij

j

i
i

i ww
w

w
ww

w

w
ww

w

w
 ,,, ,2

2

  

 
The result is a row of identical entries 
   wi, wi, …, wi 
 
whereas, in the general case, we would obtain a row of entries that represent a statistical 
scattering of values around wi. It appears, therefore, reasonable to require that wi should 
equal the average of these values. Consequently, instead of the ideal case relations (1-1) 
  wi = aijwj  (i, j = 1, 1, …, n) 
 
the more realistic relations for the general case the form (for each fixed i) 
 
  wi =  the average of (ai1w1ai2, …, ainwn) 
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More explicitly we have 
 

  wi = j

n

j
ij wa

n1

1
 (i = 1, 2, …, n)   (1-2) 

 
 While the relations in (1-2) represent a substantial relaxation of the more stringent 
relations (1-1), there still remains the question: is the relaxation sufficient to ensure the 
existence of solution; that is, to insure that the problem of finding a unique weights wi 

when the aij are given is a solvable one? 
 
Step 3  To seek the answer to the above essentially mathematical question, it is necessary 
to express the relations in (1-2) in still another, more familiar form. For this purpose we 
need to summarize the line of reasoning to this point. In seeking a set of conditions to 
describe how the weight vector w should relate to the quantified judgment, we first 
considered the ideal (exact) case in Step 1, which suggested the relations (1-1). Next, 
realizing that the real case will require allowances for deviations, we provided for such 
allowances in Step 2, leading to the formulation (1-2). Now, this is still not realistic 
enough; that is, that (1-2) which works for the ideal case is still too stringent to secure the 
existence of a weight vector w that should satisfy (1-2). We note that for good estimates 
aij tends to be close to wi/wj and hence is a small perturbation of this ratio. Now as aij 
changes it turns out that there would be corresponding solution of (1-2), (i.e., wi and wi 
can change to accommodate this change in aij from the ideal case), if n were also to 
change. We denote this value of n by max. Thus the problem 
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 i= 1, …, n     (1-3) 

 
has a solution that also turns out to be unique. This is the well-known eigenvalue problem 
with which we will be dealing. 
 In general, deviations in the aij can lead to large deviations both in max and wi,i = 
1, …, n. However, this is not the case for a reciprocal matrix which satisfies rules 1 and 
2. In this case we have a stable solution. 
 Recall that we have given an intuitive justification of our approach. There is an 
elegant way of framing this in mathematical notation. It is given in detail in later 
chapters. Briefly stated in matrix notation, we start with that we call the paradigm case 
Aw = nw, where A is a consistent matrix and consider a reciprocal matrix A1 which is 
perturbation of A, elicited from pairwise comparison judgments, and solve the problem 
A1w1 = maxw

1 is the largest eigenvalue of A1. 
 We have sometimes been interested in the opposite questions to dominance with 
respect to a given property. We have called it recessiveness of one activity when 
compared with another with respect to that property. In that case we solve for the left 
eigenvector v in vA = maxv. Only when A is consistent are the elements of v and w 
reciprocals. Without consistency they are reciprocals for n=2 and n=3. In general one 
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need not expect them to have a definite relationship. The two vectors correspond to the 
two sides of the Janus face of reality –the bright and the dark. 
 
 
1-6 HIERARCHICAL COMPOSITION OF PRIORITIES  
BY EXAMPLE 
 
School Selection Example 
 
Three highshools, A, B, C, were analyzed from the standpoint of the author’s son 
according to their desirability. Six independent characteristics were selected for the 
comparison –learning, friends, school life, vocational training, college preparation, and 
music classes (see Fig. 1-4). The pairwise judgment matrices were as shown in Table 1-2 
and 1-3. 
 

Satisfaction with school
o

L F               S     V         C     M

Learning Friends School life Voc. Train. Col. Prep. Music classes

o o o
A B C

Figure 1-4 School satisfaction hierarchy
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Table 1-2  Comparison of characteristics with respect to overall

satisfaction with school

School Vocational College Music

Learning Friends life training preparation classes

Learning 1 4 3 1 3 4

Friends 1/4 1 7 3 1/5 1

School life 1/3 1/7 1 1/5 1/5 1/6

Vocational

  training 1 1/3 5 1 1 1/3

College

  preparation 1/3 5 5 1 1 3

Music classes 1/4 1 6 3 1/3 1

         C.I. = 0.30, C.R. = 0.24,49.7max 
 

 
Table 1-3  Comparison of schools with respect to the six characteristics

Learning Friends School life

A B C A B C A B C

A 1 1/3 1/2 A 1 1 1 A 1 5 1

B 3 1 3 B 1 1 1 B 1/5 1 1/5

C 2 1/3 1 C 1 1 1 C 1 5 1

= 3.05 = 3.00 = 3.00

C.I. = 0.025 C.I. = 0 C.I. = 3.00

C.R. = 0.04 C.R. = 0 C.R. = 0

Vocational training College preparation Music classes

A B C A B C A B C

A 1 9 7 A 1 1/2 1 A 1 6 4

B 1/9 1 1/5 B 2 1 2 B 1/6 1 1/3

C 1/7 5 1 C 1 1/2 1 C 1/4 3 1

= 3.21 = 3.00 = 3.05

C.I. = 0.105 C.I. = 0 C.I. = 0.025

C.R. = 0.18 C.R. = 0 C.R. = 0.04

max max

maxmax

maxmax

maxmaxmax maxmaxmax maxmaxmaxmax

 
  

The priority vector of the first matrix is given by 
 
   (0.32, 0.14, 0.03. 0.13, 0.24,0.14) 
 
and its corresponding eigenvalue is max= 7.49 which is somewhat far from the consistent 
value 6. The C.I. is 0.30 and C.R. is 0.30/1.24 = 0.24, which is high. 
 
 To obtain the overall ranking of the schools, we multiply the last matrix on the 
right by the transpose (column version) of the row vector of weights of the 
characteristics. This is the same as weighting each of the above six eigenvectors by the 
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priority of the corresponding characteristics and then adding (made possible by the 
independence of the characteristics (see below for further elaboration). This yields 
 
   A = 0.37 
   B = 0.38 
   C = 0.25 
 

Table 1-4

School Vocational College Music

Learning Friends life training preparation classes

0.16 0.33 0.45 0.77 0.25 0.69

0.59 0.33 0.09 0.05 0.50 0.09

0.25 0.33 0.46 0.17 0.25 0.22  
 
 The son went to school A because it had the almost rank as school B, yet school B 
was a private school charging close to $1,600 a year and school A was free. This was a 
conflict problem between the author’s son and wife; the first preferred school A, and the 
second school B, but neither took money into consideration as important. Although the 
C.R. for the second level was high they took the decision anyway despite protestations 
from author about high inconsistency. 
 
Explanation using Fig. 1-4  If the weights of the criteria and the schools with respect to 
each criterion are as indicated along each line segment in the figure, then 
 
 Overall rank of school A = aLL+aFF+asS+avV+acC+aMM 

Overall rank of school B = bLL+bFF+bsS+bvV+bcC+bMM 
Overall rank of school C = cLL+cFF+csS+cvV+ccC+cMM 

  
The previous calculations are the same as the following matrix multiplication

0.32(L )
0.14(F )

0.16(a L ) 0.33(a F ) 0.45(a S ) 0.77(a V ) 0.25(a C ) 0.69(a M ) 0.03(S )

0.59(b L ) 0.33(b F ) 0.09(b S ) 0.05(b V ) 0.50(b C ) 0.09(b M ) 0.13(V )

0.25(c L ) 0.33(c F ) 0.46(c S ) 0.17(c V ) 0.25(c C ) 0.22(c M ) 0.24(C )

0.14(M )  
 

To find out the measure of satisfaction of a candidate with a school, first we need to 
list the important criteria which characterize schools and compute the relative 
desirabilities of these criteria to the candidate. Desirability would vary from one 
candidate to another. For example, one student may find friends more attractive than 
college preparation while another may feel the opposite way. The criteria are denoted by 
L, F, S, V, C, and M in the figure. 

The second step is to compute the relative standing of each school with respect to 
each criterion. For example, one school may have better music classes while another is 
well known for its vocational training.  
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To get the overall ranking of each school, first we need to multiply the weight 
indicating the qualification of that school with respect to the criterion by the weight of 
that criterion. We then add these values for each school with respect to all the criteria. 
Since the relative weight of learning is L,aL is the overall weight of learning for school A. 
By the same argument we calculate aFF, asS, aVV, aCC, aMM,. Therefore, the overall rank 
of school A is the sum of the overall weights of the activities mentioned previously, i.e., 
overall rank of school A = aLL+aFF+ asS+aVV+aCC+ aMM. 
 The reader who is interested in the perversity of youthful judgment may wish to 
see what the priorities look like three years later (Table 1-5). The young man (now aged 
18) no longer considers friends or vocational training as important. His interest in college 
and music seem to dominate. They have become urgent need rather than long range 
aspirations. Consistency has also improved tremendously. 
 The priorities of the schools with respect to the characteristics are the same as 
before and it is now much clearer than the right choice was made then. The priorities of 
the schools are A=0.40, B=0.36, C=0.25. 
 
 
1-7 PROTOCOL OF A PRIORITIZION SESSION 
 
The first requirement in the analysis of the functions of a system is to construct the 
hierarchy representing these functional relations. So far it has been found that for most 
simple systems, the hierarchy suggests itself in a natural correspondence with the 
functions of the system. However, the system may have a high degree of complexity and 
it may not be easy to find the hierarchical structure which corresponds to this system. In a 
more direct approach we have often resorted to the process of brainstorming, by putting 
down all elements relevant to that hierarchy. We then arranged these in groups according 
to dominance among the groups. These groupings served as the hierarchy levels. This 
process of groupings can be better accomplished by a technical procedure described later. 
It may be useful to mention that two properties of a hierarchy level which have strong 
overlap should be grouped together as a single more general property for the comparison. 
For example, quality and size often go together and may be grouped together as 
suitability.  
 
Table 1-5  Overall satisfaction with school

School Vocational College Music

Learning Friends life training preparation classes

Learning 1 5 7 5 3 1

Friends 1/5 1 3 1/5 1/6 1/6

School life 1/7 1/3 1 1/4 1/5 1/5

Vocational

  training 1/5 5 4 1 1/5 1/6

College

  preparation 1/3 6 5 5 1 1

Music classes 1 6 5 6 1 1

 
The eigenvalue of this matrix is max= 6.68, C.I. = 0.14, C.R. = 0.14 
The corresponding eigenvector is (0.33, 0.05, 0.03, 0.09, 0.23, 0.27) 
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 To assist with the quality of informed judgment inputs, it is essential that the 
hierarchy of activities, objectives, and still higher objectives be set up with care. A study 
may be required to identify and characterize those properties in the levels of the hierarchy 
which affect the performance of the higher-level properties or the fulfillment of higher-
level objectives.  
 After dividing the ideas into categories, the process of defining the purposes for 
which the problem is being studied and structuring the hierarchy is carefully and 
methodically carried out. Tentativeness in the structuring process is essential. What is 
most important is that an individual’s knowledge and judgments or those of a group have 
a fair chance of being adequately and correctly expressed. This is not a task for a weary 
and short-tempered director. Diplomacy and concern for the feelings of the people 
involved are paramount. Yet the leader himself must make sure that differences do not 
cause the process of deteriorate. Occasionally it helps to remind the participants that 
someone has to do something about the problem, and that if they are not able to 
crystallize their ideas, the result may come out contrary to what they might desire to see 
happen in a fair process. 
 Before proceeding with prioritization, we urge that an attempt be made to write 
down a definition of the elements introduced to avoid controversial arguments later on. 
 The same approach may be used to assist a single decision maker in organizing 
the complexity he faces and derive priorities which reflect his belief and attitudes. In a 
complex situation there is little hope that problems can be resolved by an internalized 
mystical, but not articulated, understanding of the important factors. It may be 
counterproductive to be perpetually concerned that the process may leave out some 
important factors. If an individual really understands the process he would have to be 
aware of the important factors and keep examining his feelings for residual factors that 
are important but not yet included. This is one reason why one should take time to study a 
problem and not rush through it.  
 The quality of the output may be evaluated by how logically satisfactory the 
answers are. They must, in some sense, conform with the original input. For example, a 
member of a level that is favored over the other members through the original pairwise 
judgments should come out with the highest ranking and so on down the line. Or course, 
it is the very purpose of the model to develop a consistent order. Note that the total 
ordering is not known at the beginning, but only pairwise comparisons which may in fact 
be inconsistent. The results must conform with what one intuitively expects as a 
reasonable outcome. Otherwise, there would be discrepancy between the judgments 
provided and the operations of the theory.   
 It is important to remark that the numbers used in the scale are absolute 
magnitudes and not simple ordinal numbers. This says that our scale does not allow 
comparisons whose intensity exceeds 9. As we have indicated, elements must be put into 
clusters within each of which the elements are comparable with this scale, and then the 
clusters in turn must also be compared with this scale. Note that it may be necessary to 
invent or introduce intermediate clusters in order to be able to make relative comparisons 
which lead from the cluster with the smallest (or weakest) elements to be cluster with the 
largest (or strongest) elements. This is the natural way we do things and not an artifice 
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adopted for the theory. We cannot directly compare the weight of a grain of sand with 
that of the sun. We need a gradual transition between them. 
 One must prioritize very carefully the highest levels of the hierarchy because it is 
there that consensus is most needed since these priorities drive the rest of the hierarchy. 
In each level one must ensure that the criteria represented are independent or at least are 
sufficiently different, and that these differences can be captured as independent properties 
in the level. Revision of the elements may be necessary to capture independence 
successfully. Since there are times when dependence is holistic and cannot be removed, 
our approach can also be adapted to handle interdependence, as we shall see in Chap. 6. 
As one goes farther down the hierarchy one expects greater variability of opinion among 
compatible people as we reach the operating level. In that case, each person wants a piece 
of the action. To the extent that people agree about the meaning as well as the importance 
of the elements more resources should be allocated to that area; to the extent that people 
disagree about the either meaning or importance, their judgments tend to nullify each 
other and the area tends to get smaller share of the action until greater support for it is 
obtained. If an area important to our needs, but there is disagreement on implementation, 
we would have to withhold action until people develop a better appreciation for the need 
and can induce more cohesive action. This is a logic outcome of the hierarchical 
approach. Where there is disagreement, people will tend to be dissatisfied because they 
don’t see realization of their judgments. Otherwise, with agreement there is greater 
satisfaction. 
  A large audience of diverse backgrounds would require a great deal of time to 
structure a hierarchy and provide judgments. Wear and tear may set in early and the 
meeting may not lead to fruitful results in the allotted time. The best way to engage a 
large group is either to choose a narrow focus for the discussion or better, to have them 
generate the hierarchy (or provide them with one for debate) and then divide them into 
homogenous groups and let each group provide the judgments in those parts of the 
hierarchy which relate to their special interest. People should be told that some might feel 
frustrated during the process; they could go out for a walk or participate in a discussion in 
a separate room while the others carry on, and then return when they feel reinvigorated. 
This avoids deterioration of the process. 
 Of course there are times when political favors, hidden agenda, disruption, and 
other political processes may be in operation and group interaction and cooperation 
would be difficult. We have encountered such problems in our experience using the 
Analytic Hierarchy Process (AHP). Our conclusion is that the AHP is a powerful tool for 
those who want to assess their own and their opponent’s strategies. Those who do not 
wish to participate cannot be forced to, but they can sometimes coaxed to do so.  
 In cooperative undertakings, the process moves faster when the participants have 
in common: (1) shared goals; (2) intimate long term contact; (3) work in a climate of 
social acceptance; and (4) have equal status when participating.  
 A final observation is that group interaction is not unlike a marriage, about which 
people tend to have romantic feelings at the start, but as they get into it they find that 
there is a good deal of friction, feuding, and dissent. However, overall, life moves on and 
there are fundamental points of agreement and mutual needs which keep people together. 
Thus one must not enter any group interaction process with too much idealism and a 
strong predisposition for propriety and order. 
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 We now turn our attention to the next step in the process, which is to solicit 
informed judgments from people. 
 We are given the elements of a hierarchy level and wish to construct the matrix of 
pairwise comparison among these elements in relation to each element of the next higher 
level which serves as a criterion or property with respect to which they are compared. 
The individuals, who give the judgments, are asked the following type of question: Given 
a pair of elements of the matrix, which one do you believe in more dominant in 
possessing or contributing to the property in question? How strong is this dominance: 
equal, weak, strong, demonstrated, or absolute, or is it a compromise between adjacent 
values in this strength comparison? 
 The question must be carefully phrased to evoke the judgment or feeling of the 
individuals involved. Uniformity should be maintained in the questions asked. It is 
essential to focus on the property involved as people’s minds may wander fuzzily to more 
general properties. 
 
Remark  In order to obtain a set of priorities that reflect the merit or positive impact of the 
activities, the set of properties with respect to which they are compared must be 
formulated in such a way that the desirable attributes of the activities are brought out. For 
example, the cost of going on vacation would yield a high priority number for the more 
expensive vacation spot, but in fact, this priority should be low. In that case, the question 
to ask is: Which vacation place saves more on cost rather than which one costs more? 
 
 If the individual differ in their judgment, they are allowed to make a case for 
themselves by either reaching consensus (which sometimes happens even after a heated 
debate) or by following whether ground rules there are for reaching a single judgment, 
such as majority vote. Individuals have been known to change their position. In some 
cases a whole group changed their position after listening to reasons given by one 
member. Bargaining is possible whereby people accept the judgments given by others in 
return for using their judgment in another area more important to them.  
 When people are reluctant to volunteer their judgment, an auction-type procedure 
may be followed by proposing a judgment value and asking people how they feel about 
it. Lack of inclination to discriminate between two elements often means that they share 
the property equally among them. When there is no agreement, each individual records 
his judgments and the solutions are examined for a clearer understanding of what (if 
anything) can be done. There are times when differences in the world of people cripple 
action. 
 When the entire set of judgments has been obtained, people are asked about how 
faithfully they feel their understanding and judgments have been represented. This avoids 
hard feelings arising out of being ignored. Debates might be shortened if time is limited, 
but people should be reminded that it is their problem and requires sufficient time to get 
good results. The participants should always be consulted about the adequacy of the 
hierarchical structuring of their problem and the representation of their judgments. If 
there are objections, they should be carefully and patiently considered. If revisions are 
desired, they may be assigned as subtasks to be performed soon and reported on to the 
group. 
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 Frequently, one can note areas of greatest difference in judgment and bring them 
up again later in the session for review. 
 The procedure may begin by focusing on the rows of the matrix in the order of 
believed dominance of their corresponding elements essentially implying that people can 
probably tell the ordinal dominance of the elements in advance. The strongest and 
weakest elements are compared first to provide a guidepost for the other values. Of 
course, this may no be always possible. Another way is to try and find out those 
comparisons which people are sure of. 
 The numerical values and their reciprocals are entered in the matrix each time a 
judgment is obtained and soon people learn to give the numbers directly. The geometric 
means of the judgments may be used when people don’t want to enter into debate. This is 
probably a less desirable alternative. Sometimes one can obtain the individual priority 
vectors and take their geometric mean for an answer.  
 It is worth noting that at times lower priority criteria finally determine the choice 
of alternatives. Consider an average family of four buying a car. The more important 
criterion is the budget (priority 0.52) they have available. Next is the price of the car 
(priority 0.23). A relatively low priority is the style and size (priority 0.16) and, finally, 
economy of operation (priority 0.09). Once they have selected several cars of the same 
price range allowed by their budget, the final selection one of this group is dictated by the 
style and economy. The higher priority criteria help in choosing the suitable and 
affordable class of car; the lower priority criteria help in choosing the individual car from 
among the brands.  
 Four types of questions are sometimes raised with regard to the judgments 
process: (1) the primary effect, or whether providing judgments may not bias the outcome 
toward what is examined first; (2) the recency effect, or the influence of the latest 
information over what went before, (3) the out-of-role- behavior where people assume 
the role of others and provide judgments for them without full appreciation of the people 
they represent; and (4) personal bias while participating in group decision making. Most 
of these phenomena can occur in an ordinary group session. Their influence is diminished 
if more time is taken with repeated interaction and people are cautioned about personal 
bias. In other words to correct problems of handing information different repetitions of 
the problem should highlight these difficulties leading to a final exercise considered by 
the group to be representative of the problem. 
 
 
For the Decision-maker 
 
If you are faced with a number of options to choose from and you have a maze of criteria 
to judge with, do the pairwise comparison of the criteria with respect to short and long-
range efforts, risks and benefits, and also make a pairwise comparison matrix with respect 
to effectiveness and success. Finally, on the lowest level, compare the options with 
respect to each criterion, compose the weights hierarchically, and select the highest 
priority. If you have canvassed enough judgments so that you are sure you have 
considered all the relevant factors and good judgments, stop agonizing over your choice. 
You have done your human best to make the right choice. For quick decisions in day-to-
day operations maintain a file of your working hierarchies, their judgments and resulting 
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priorities. Change the necessary judgments for that decision to obtain the result or note 
which judgments have to be changed to obtain a desired result. Finally, add elements with 
their relevant judgments if necessary to obtain new priorities. This can also be done by 
interacting with a computer which has the information stored. For portfolio selection, a 
benefits hierarchy and a costs hierarchy are needed. The ratios of benefits to costs are 
then used for decision purposes.  
 
 
1-8 SUMMARY 
 
The eigenvalue approach to pairwise comparisons provides a way for calibrating a 
numerical scale, particularly in new areas where measurements and quantitative 
comparisons do not exist. The measure of consistency enables one to return to the 
judgments modifying them here and there to improve the overall consistency. The 
participation of several people makes it possible to make tradeoffs between different 
entries. It can also create a dialogue for what the real relation should be: a compromise 
among the various judgments representing diverse experience.  
 The steps of the process proceed as follows. 
 

(1) State the problem. 
(2) Put the problem in broad context –embed it if necessary in a larger system 

including other actors, their objectives, and outcomes. 
(3) Identify the criteria that influence the behavior of the problem 
(4) Structure a hierarchy of the criteria, sub-criteria, properties of alternative, and 

the alternative themselves. 
(5) In a many party problem the levels may relate to the environment, actors, actor 

objectives, actor policies, and outcomes, from which one derives the composite 
outcome (state of the world). 

(6) To remove ambiguity carefully defines every element in the hierarchy. 
(7) Prioritize the primary criteria with respect to their impact on the overall 

objective called the focus. 
(8) State the question for pairwise comparisons clearly above each matrix. Pay 

attention to the orientation of each question, e.g., costs go down, benefits go up. 
(9) Prioritize the sub criteria with respect to their criteria. 
(10) Enter pairwise comparison judgments and force their reciprocals. 
(11) Calculate priorities by adding the elements of each column and dividing each 

entry by the total of the column. Average over the rows of the resulting matrix 
and you have the priority vector. 

 
For (12)-(15) see later chapters 

 
(12) In the case of scenarios calibrate their state variables on a scale of –8 to 8- as to 

how they differ from the present zero. 
(13) Compose the weights in the hierarchy to obtain composite priorities and also the 

composite values of the state variables which collectively define the composite 
outcome. 
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(14) In case of choosing among alternatives select the highest priority alternative. 
(15) In the case of resource allocation, cost out alternatives, compute benefit to cost 

ratio and allocate accordingly, either fully or proportionately. In a cost 
prioritization problem allocate resources proportionately to the priorities. 

 
 
1-9 HIERARCHIES AND JUDGMENTS BY QUESTIONNAIRE 
 
It is possible to elicit the hierarchy concerning an issue by questionnaire, synthesize the 
result, and follow up by another questionnaire to elicit judgments. 
 We give a simple illustration of how judgments may be obtained for a single 
matrix by using a questionnaire. The same method can be applied to a hierarchy. Let us 
consider the optics example to obtain judgments on the relative brightness of chairs. We 
indicate scale values ranging from one extreme down towards equality and then again 
raising to the extreme. In a left column we list all the alternatives to be compared for 
dominance with other alternatives in the right column. In all, each column  contains  
n (n-1) alternatives. We then ask people to check the judgment, which indicates the 
dominance of the element in the left column over the corresponding one in its row in the 
right column. If in fact there is such dominance some position in the set of values to the 
left of equality is checked. Otherwise equality or a position in the right set of values is 
checked. The same is done for all alternatives. 
 
 
Relative brightness

Column Abso- Very Very Abso- Column
I lute strong Strong Weak Equal Weak Strong strong lute II

C 1 C 2

C 1 C 3

C 1 C 4

C 2 C 3

C 2 C 4

C 3 C 4
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CHAPTER  

TWO 
 

INSTRUCTIVE EXAMPLES 
 
 
2-1 INTRODUCTION 
 
In this chapter, we shall develop our method further primarily with the help of 
examples. First, we shall relate the “illuminated chairs” experiment and show that the 
relative brightness of the chairs, as determined by the subjective pairwise 
comparisons, are very close to those predicted by the inverse-square law of optics. As 
a further indication that our method produces, in cases where the actual figures are 
known, a close approximation to these values, we shall reproduce the results of the 
elementary study of the influence of nations through their wealth. Following that is an 
example estimating the relative distance of six cities from Philadelphia. We then 
distinguish between complete and incomplete hierarchies.  
 We close the chapter with two further examples. They were chosen in order to 
demonstrate how one determines an overall priority of the bottom level elements in a 
hierarchy with more than two levels. The first one gives us the opportunity to make 
some observations of more general interest. 
 
 
2-2 TEST FOR ACCURACY, RMS AND MAD 
 
Of considerable interest to us must be the issue of how closely the priority vector 
developed by our method matches the “real” priority sector. One way to ascertain this 
is to apply the method to situations which allow determination of the actual numbers. 
In such cases, we wish to check how accurate the priority vector is.  
 To test for accuracy we must compare estimates in experiments with real 
answers that are known. Comparison of numbers involves the use of statistical 
measures. There are not many measures for validating theoretical results against 
reality. Two are the root mean square deviation and the median absolute deviation 
about the median. They are usually used for comparison purposes among several 
sample estimates to choose the one closest to reality and not as absolute measures. 
Both are a means of measuring the spread of a set of measurements from a known set 
of underlying values.  
 Deviations between small numbers are apt to be small. To see how 
significantly small they are in absolute terms they must be divided by the average size 
number they are taken from. In our case it would be 1/n where n is the number of 
items being compared. Incidentally, one measure of error might be to take the 
differences (or absolute differences), weight them by the priorities, take their average, 

then divide by 1/n, i.e., use ii

n

i
i xww 

1

 where wi are the priorities and xi are their 

estimates. 
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 The root mean square deviation (RMS) of two sets of numbers a1, …., an and 

b1, …., bn is: 2

1

)(
1

i

n

i
i ba

n




 

 
The median of a set of n numbers is obtained by arranging the numbers in increasing 
order and taking the middle term if n is odd and the average of the two middle terms if 
n is even. The median absolute deviation about the median (MAD) of a set of 
numbers a1, …., an and b1, …., bn is given by median (aibi)median (aibi). As an 
illustration, see the illumination intensity example in the next section.  
 
 
2-3 ILLUMINATION INTENSITY AND  
THE INVERSE SQUARE LAW 
 
In Chap. 1 we presented the chair brightness example and proceeded as far as filling 
in the judgments and solving for the relative brightness. Four identical chairs were 
placed on a line from a light source at the distances of 9, 15, 21, and 28 yards. The 
purpose was to see if one could stand by the light and look at the chair and compare 
their relative brightness in pairs, fill in the judgment matrix and obtain a relationship 
between the chairs and their distance from the light source. This experiment was 
repeated twice with different judges whose judgment matrices we now give. The first 
of these was given in Chap. 1. 
 

Relative visual brightness Relative visual brightness
(1st Trial) (2nd Trial)

C 1 C 2 C 3 C 4 C 1 C 2 C 3 C 4

C 1 1 5 6 7 C 1 1 4 6 7

C 2 1/5 1 4 6 C 2 1/4 1 3 4

C 3 1/6 1/4 1 4 C 3 1/6 1/3 1 2

C 4 1/7 1/6 1/4 1 C 4 1/7 1/4 1/2 1

 
The judges of the first matrix were the author’s young children, ages 5 and 7 at 

that time, who gave their judgments qualitatively. The judge of the second matrix was 
the author’s wife, who was not present during the children’s judgment process. 
 

Relative brightness eigenvector Relative brightness eigenvector
(1st Trial) (2nd Trial)

0.61 0.62
0.24 0.22
0.10 0.10
0.05 0.06  

 
max = 4.39     max = 4.1 
 C.I. = 0.13      C.I. = 0.03 
 C.R.= 0.14      C.R.= 0.03 
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Table 2-1 Inverse square law of optics 
 

Square of Reciprocal
Normalized normalized of previous Normalized Rounding

Distance distance distance column reciprocal off
9 0.123 0.015 129 66.098 0.607 9 0.61
15 0.205 0.042 025 23.79 0.218 8 0.22
21 0.288 0.082 944 12.05 0.110 8 0.11
28 0.384 0.147 456 6.78 0.062 3 0.06

 
First and second trial eigenvectors should be compared with the last column of 

the Inverse Square Law Table (2-1) calculated from the inverse square law in optics. 
It is interesting and important to observe that the judgments have captured a natural 
law here. It would seem that they could do the same in other areas of perception or 
thought, as we shall see later. 
 Note that sensitivity of the results as the object is very close to the source, for 
then it absorbs most of the value of the relative index and a small error in its distance 
from the source yields great error in the values. What is noteworthy from this sensory 
experiment is the observation or hypothesis that the observed intensity of illumination 
varies (approximately) inversely with the square of the distance. The more carefully 
designed the experiment, the better the results obtained from the visual observations. 
 The RMS of (0.62, 0.22, 0.10, 0.06) and (0.61, 0.22, 0.11, 0.06) is 1/4(0.01)2 

+ 0 + (0.01)2+01/2 = 2.23x103. The MAD is as follows. The differences between the 
two vectors are given by (0.01, 0, 0.01, 0). The median of these numbers is 0+0/2 = 
0. The deviations about this median are (0.01, 0, 0.01, 0). Their absolute value is 
taken and the median of the result is (0.01+0)/2 = 0.005 = 5x103. The significance of 
both RMS and MAD may be determined by dividing their values by the average value 
of the vector components which is simply 1/n, where n is the number of components. 
Two vectors are nearly the same if either or both ratios are, for example, less than 0.1. 
 
 
2-4 WEALTH OF NATIONS THROUGH THEIR WORLD INFLUENCE 

(Saaty and Khouja, 1976) 
 
A number of people have studied the problem of measuring world influence of 
nations. We have briefly examined this concept within the framework of our model. 
We assumed that influence is a function of several factors. We considered five such 
factors: (1) human resources; (2) wealth; (3) trade; (4) technology; and (5) military 
power. Culture and ideology, and potential natural resources (such as oil) were not 
included.  
 Seven countries were selected for this analysis. They are the U.S., U.S.S.R., 
China, France, U.K., Japan, and West Germany. It was felt that these nations as a 
group comprised of a dominant class of influential nations. It was desired to compare 
them among themselves as to their overall influence in international relations. We 
realize that what we have is a very rough estimate, mainly intended to serve as an 
interesting example of an application of our approach to priorities. We will only 
illustrate the method with respect to the single factor of wealth. The more general 
problem is studied in the paper referenced above.  
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 In Table 2-2, we give a matrix indicating the pairwise comparisons of the 
seven countries with respect to wealth. For example, the value 4 in the first row 
indicates the wealth is between weak and strong importance in favor of the U.S. over 
the U.S.S.R. The reciprocal of 4 appears in the symmetric position, indicating the 
inverse relation of relative strength of the wealth of the U.S.S.R. compared to the U.S. 
 
Table 2-2 W ealth

U.S. U.S.S.R. China France U.K. Japan W .Germ any
U.S. 1 4 9 6 6 5 5
U.S.S.R. 0.25 1 7 5 5 3 4
China 0.11 0.14 1 0.2 0.2 0.14 0.2
France 0.17 0.2 5 1 1 0.33 0.33
U.K. 0.17 0.2 5 1 1 0.33 0.33
Japan 0.2 0.33 7 3 3 1 2
W .Germ any 0.2 0.25 5 3 3 0.5 1

max = 7.068, C.I. = 0.10, C.R. = 0.08 

Explanation of Table 
The first row compares the wealth influence (e.g., the Marshall Plan, A.I.D., etc.) of the U.S. with the 
other nations. For example, it is of equal importance to the U.S. (hence, the unit entry in the first 
position), between weak and strong importance when compared with the U.S.S.R. (hence, the value 4 
in the second position), of absolute importance when compared with China (hence, the value 9 in the 
third position). We have values between strong and demonstrated importance when compared with 
France and U.K. (hence a 6 in the next two positions), strong importance when compared with Japan 
and Germany (hence, a 5 in the following two positions). For the entries in the first column we have the 
reciprocals of the numbers in the first row indicating the inverse relation of relative strength of the 
wealth of the other countries when compared with the U.S. and so on for the remaining values in the 
second row and second column, etc. 

 
Table 2-3 Normalized wealth eigenvector

Normalized Actual Fraction of
eigenvector GNP* (1972) GNP Total

U.S. 0.427 1,167 0.413
U.S.S.R. 0.230    635 0.225
China 0.021    120 0.043
France 0.052    196 0.069
U.K. 0.052    154 0.055
Japan 0.123    294 0.104
W.Germany 0.094    257 0.091

Note : Root Mean Square Deviation = 0.024

Estimates of the GNP of China range from 74 billion

to 128 billion. Those of Russia are also uncertain.

* Billions of dollars

 
 

 
Note that the comparisons are not consistent. For example, U.S.: U.S.S.R. = 4, 

U.S.S.R.: China = 7 but U.S.: China = 9 (not 28). Nevertheless, when the requisite 
computations are performed, we obtain relative weights of 0.427 and 0.230 for the 
U.S. and Russia, and these weights are in striking agreement with the corresponding 
Gross National Products (GNP) as percentages of the total GNP (see Table 2-3). 
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Thus, despite the apparent arbitrariness of the scale, the irregularities disappear and 
the numbers occur in good accord with the observed data. Thus wealth influence is 
proportional to actual wealth. 

Compare the normalized eigenvector column derived by using the matrix of 
judgments in Table 2-1 with the actual GNP fraction given in the last column. The 
two are very close in their values. Estimates of the actual GNP of China range from 
74 billion to 128 billion. 

The value for China is more than it is for Japan in that our estimate is half the 
(admitted uncertain) GNP value. Japan’s value is a third over the true value. China 
probably does not belong in this group of nations.  
 
 
2-5 ESTIMATING DISTANCES 
 
Six cities were chosen: Montreal, Chicago, San Francisco, London, Cairo, and Tokyo. 
Their distances from Philadelphia were compared, pairwise by an experienced air 
traveler, who thought only of the airplane boredom and did not think of actual times 
or distances. The distance comparison matrix shown gives the judgments. The other 
matrix gives the actual distances, their normalized values, and the eigenvector derived 
from the judgment matrix.  
 
Comparison of distances of San

cities from Philadelphia Cairo Tokyo Chicago Francisco London Montreal

Cairo 1 1/3 8 3 3 7

Tokyo 3 1 9 3 3 9

Chicago 1/8 1/9 1 1/6 1/5 2

San Francisco 1/3 1/3 6 1 1/3 6

London 1/3 1/3 5 3 1 6

Montreal 1/7 1/9 1/2 1/6 1/6 1

= 6.45, C.I. = 0.09, C.R. = 0.07

Distance to

Philadelphia Normalized

City (miles) distance Eigenvector

Cairo 5 729 0.278 0.263

Tokyo 7 449 0.361 0.397

Chicago    660 0.032 0.033

San Francisco 2 732 0.132 0.116

London 3 658 0.177 0.164

Montreal    400 0.019 0.027

max

 
 
2-6 TYPICAL HIERARCHIES 
 
Figures 2-1 and 2-2 are illustrations of two different hierarchies. 
 In Fig. 2-1 the first hierarchy level has a single objective; the overall welfare 
of a nation. Its priority value is assumed to be equal to unity. The second hierarchy 
level has three objectives: strong economy, health, and national defense.  
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Their priorities are derived from a matrix of pairwise comparisons with respect to 
their objective of the first level. The third hierarchy level objectives are industries. 
The object is to determine the impact of the industries on the overall welfare of a 
nation through the intermediate second level. Thus their priorities with respect to each 
objective in the second level are obtained from a pairwise comparison matrix with 
respect to that objective, and the resulting three priority vectors are then weighted by 
the priority vector of the second level to obtain the desired composite vector of 
priorities of the industries.  
 In Fig. 2-2, the hierarchy consists of four levels, the first being the overall 
welfare of a nation, the second a set of possible future scenarios of that nation, the 
third level the provinces of that nation, and the fourth are transport projects which are 
to be implemented in the provinces. Note that not every province affects each scenario 
nor does each project affect every province. The hierarchy in Fig. 2-2 is not a 
complete one. The object is to determine the priorities of the projects as the impact on 
the overall objective. Here one must weigh the priorities of each comparison set by 
the ratio of the number of elements in that set to the total number of elements in the 
fourth level. This is done occasionally when the hierarchy is not complete. Sometimes 
an incomplete hierarchy may be studied as a complete hierarchy but using zeros for 
the judgments and their reciprocals in the appropriate place.  
 
 

Overall welfare of a nation

First hierarchy

level

Second

hierarchy

level

Third hierarchy

level

Figure 2-1 A complete hierarchy for priorities of industries

Strong
economy

Health
National
defense

Industries
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Overall welfare of a nation

First hierarchy

level

Second

hierarchy

level

Third hierarchy

level

Fourth

hierarchy

level

Figure 2-2 A hierarchy for priorities of transport projects in national planning

 
 
 
2-7 PSYCHOTERAPY 
 
The Analytic Hierarchy Process may be used to provide insight into psychological 
problem areas in the following manner. Consider an individual’s overall well being as 
the single top-level entry in a hierarchy. Conceivably this level is primarily affected 
by childhood, adolescent, and adult experiences. Factors in growth and maturity 
which impinge upon well-being may be the influences of the father and the mother 
separately as well as their influences together as parents; the socio-economic 
background; sibling relationships, one’s peer group, schooling, religion status, and so 
on. 
 The above factors which comprise the second level in our hierarchy are further 
affected by criteria pertinent to each. For example, the influence of the father may be 
broken down to include his temperament, strictness, care, and affection. Sibling 
relationships can be further characterized by the number, age differential, and sexes of 
siblings; peer pressure and role modeling provide a still clearer picture of the effects 
of friends, schooling, and teachers. 
 As an alternative framework of description for the second level, we might 
include self-respect, security, adaptability to new people and new circumstances, and 
so on, influencing or as influenced by the elements above. 
 A more complete setting for a psychological history might include several 
hundreds of elements at each level, chosen by trained individuals and placed in such a 
way as to derive the maximum understanding of the subject in question. 
 Here we will consider a highly restricted form of the above, where the 
individual in question feels his self-confidence has been severely undermined and his 
social adjustments impaired by a restrictive situation during childhood. He is 
questioned about his childhood experiences only and asked to relate the following 
elements pairwise on each level. 
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Level 1. Overall well being (OW) 
Level 2. Self-respect, sense of security, ability to adapt to others (R, S, A) 
Level 3. Visible affection shown for subject (V) 
    Ideas of strictness, ethics (E) 
    Actual disciplining of child (D) 
    Emphasis on personal adjustments with others (O) 
Level 4. Influence of mother, father, both (M, F, B) 
 
The replies in the matrix form were as follows. 
 

OW

R S A
R 1 6 4
S 1/6 1 3
A 1/4 1/3 1

= 3.26
C.I. = 0.07
C.R. = 0.12

max

 

R S A

V E D O V E D O V E D O

V 1 6 6 3 V 1 6 6 3 V 1 1/5 1/3 1

E 1/6 1 4 3 E 1/6 1 4 3 E 5 1 4 1/5

D 1/6 1/4 1 1/2 D 1/6 1/4 1 1/2 D 3 1/4 1 1/4

O 1/3 1/3 2 1 O 1/3 1/3 2 1 O 1 5 4 1

= 4.35 = 4.35 = 5.42

C.I. = 0.12 C.I. = 0.12 C.I. = 0.47

C.R. = 0.13 C.R. = 0.13 C.R. = 0.52

V E

M F B M F B

M 1 9 4 M 1 1 1

F 1/9 1 8 F 1 1 1

B 1/4 1/8 1 B 1 1 1

= 4.00 = 3.00

C.I. = 0.33 C.I. = 0.00

C.R. = 0.57 C.R. = 0.00

max max

max

maxmax

max

D O

M F B M F B

M 1 9 6 M 1 5 5

F 1/9 1 1/4 F 1/5 1 1/3

B 1/6 4 1 B 1/5 3 1

= 3.11 = 3.14

C.I. = 0.06 C.I. = 0.07

C.R. = 0.10 C.R. = 0.12

maxmax max
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The eigenvector of the first matrix, a, is given by 

   

OW
R 0.701
S 0.193
A 0.106

 
 
The matrix, b, of eigenvectors of the second row of matrices is given by 
 

  

R S A
V 0.604 0.604 0.127
E 0.213 0.213 0.281
D 0.064 0.064 0.120
O 0.119 0.119 0.463

 
 
The matrix, c, of eigenvectors of the third row of matrices is given by 
 

  

V E D O
M 0.721 0.333 0.713 0.701
F 0.210 0.333 0.061 0.097
B 0.069 0.333 0.176 0.202

 
The final composite vector of influence on well being obtained from the product cba 
is given by 
   Mother: 0.635 
   Father:   0.209 
   Both:     0.156 
 
It would seem that the therapy should depend on both the judgments and their 
considerable inconsistency involved. The individual was counseled to see more of his 
father to balance the parental influences. 
 
 
2-8 ENERGY ALLOCATION (Saaty and Mariano, 1979) 
 
In this example we are concerned with finding allocation weights for several large 
users of energy according to their overall contribution to different objectives in 
society. Let us assume the following conditions. 
 There are three large users of energy in the U.S.A.: C1 = household users, C2 = 
transportation, and C3 = power generating plants. These comprise the third of lower 
level of the hierarchy. The objectives against which these energy users will be 
evaluated are: contribution to economic growth, contribution to environmental 
quality, and contribution to national security, which comprise the second level of the 
hierarchy. We construct the pairwise comparison matrix of these three objectives 
according to their impact on the overall objective of social and political advantage.  
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We have forced consistency in this case –indicating a degree of certainty in the 
judgments. Thus after filling in the first row, the remaining entries were derived from 
it, as required by the definition of consistency. 
 
Social and political advantage 
 

 

Economic National

growth Environment security

Economic growth 1 5 3

M = Environmental impact 1/5 1 3/5

National security 1/3 5/3 1

= 3.0 C.I. = 0.0 C.R. = 0.0
max

 
 

When the economy is compared with the environment and then with national 
security, according to their socio-political impact, the economy is judged to be of 
strong importance in the first case and of weak importance (but still more important) 
in the second; hence, the values 5 and 3 in the first row, respectively. The reason for a 
lower number when compared with national security was thought to be due to 
evidence that economically poor nations are known to indulge heavily in buying 
weapons, but of course cannot do so without building up some financial base. The 
numbers in the second and third rows are obtained by requiring consistency in this 
case. This means, for example, that in the a23 position, we have economy strongly 
lowered over environment with value 5 and weakly favored over national security 
with value 3. Hence, the social-political impact of the environment over national 
security is 3/5 and so on. In the remaining matrices of this example we do not require 
consistency. The priority vector derived from this matrix is given by the column 
vector (which we write as a row to save space): w = (0.65, 0.13, 0.22). Thus, 
according to comparison of their socio-political impacts, the economy has the 
approximate value 0.65, the environment 0.13, and national security 0.22. Since as 
usual, the priority of the first hierarchy level (the overall socio-political objective) is 
1, the weighted values of these priorities are equal to one times the above vector, 
which yields the vector itself. 
 Now the decision-maker, after a thorough study, has also made the following 
assessment of the relative importance of each user from the standpoint of the 
economy, the environment, and national security (the second hierarchy level). The 
matrices giving these judgments are, respectively 
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Econ. C 1 C 2 C 3 Env. C 1 C 2 C 3

Consumers C 1 1 3 5 Consumers C 1 1 2 7

Transport C 2 1/3 1 2 Transport C 2 1/2 1 5

Power C 3 1/5 1/2 1 Power C 3 1/7 1/5 1

= 3.00 = 3.01

C.I. = 0 C.I. = 0.01

C.R. = 0 C.R. = 0.02

N. sec. C 1 C 2 C 3

Consumers C 1 1 2 3

Transport C 2 1/2 1 2

Power C 3 1/3 1/2 1

= 3.01

C.I. = 0.01

C.R. = 0.02

maxmaxmax

max

 As above, a priority vector is derived from each matrix. They are, respectively, 
the three columns of the following matrix: 

 

0.65 0.59 0.54
0.23 0.33 0.30
0.12 0.08 0.16

 
This matrix is multiplied on the right by the vector w to weight the priority 

vector measuring each impact with the priority of the corresponding objective. This 
yields the following composite priority vector of the hierarchy level of the activities 
C1, C2, and C3, which we seek 

  

0.62
0.26
0.12

 
Thus the overall priority of activity C1 is 0.62, that of C2 is 0.26, and C3 is 

0.12. We have now ranked the activities on a ratio scale according to their overall 
impact. This answer may appear simple, but we have to show how we get it and 
justify its meaningfulness. 
 
 
Remark  Sometimes when the weights are known measurement such as tons of 
pollutants or the cost of cars, one is inclined to normalize and use them instead of 
constructing a judgment matrix and computing the eigenvector. This process can lead 
to error, particularly when the utility of relative measurements to the judge are not 
reflected in terms of theirs ratios. For example, to a rich man, one dollar or two 
dollars may be about the same, yet their ratio shows greater significance.  
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PART 

TWO 
 

APPLICATIONS 
Marginal prioritiesDynamic prioritiesInput-
output interdependenceResource allocation 
Planning: public, privateConflict resolution 

Energy 
 

 
 
 
Our program has been to reach decision-makers by first describing the AHP, then 
showing some of its deeper and varied uses, and finally, for the scientist and 
mathematician, giving some of the basic theory. In this part we sometimes repeat 
ourselves by illustrating areas of applications despite the fact that the method seems 
the same. However, for the most part the applications are intended to highlight the 
possibility of using the AHP as a simple and reliable method for dealing with real 
world problems alongside or frequently instead of some of the existing methods. A 
theme which keeps recurring is: if decomposition and synthesis are fundamental brain 
operations which do take place along the lines suggested here, then there may be 
some social, scientific, and even mathematical problems that may gain insight by this 
type of formalization. 

Our applications produce priorities for activities satisfying certain objectives 
which themselves must satisfy other constraints as higher objectives of the hierarchy. 
We have been dealing with a relative form of optimization (without the use of a 
metric). This type of research is being continued. In Chapter 5 we deal with formally 
oriented applications whereas in Chapter 6 the applications cover a variety of real-life 
situations, and the formal framework for two point boundary planning and conflict 
resolution is presented. 
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 CHAPTER 

FIVE 
 

 PREDICTION, DYNAMIC PRIORITIES, 
INPUT-OUTPUT INTERDEPENDENCE, AND 

RESOURCE ALLOCATION 
 
 
 
 
 
5-1 INTRODUCTION 
 
As is the case with any new idea, our method and the underlying theory have many 
branches which are not yet fully developed. In this chapter we present several other 
facets of the eigenvector method (five in all) which have attained practical and 
theoretical value, although much remains to be explored in depth.  

The first of these areas is the calculation of expected values in the framework 
of a prediction problem. The second is to illustrate the use of marginal priorities. The 
third topic we treat here is that of dynamic priorities where the judgments themselves 
are functions of time and the eigenvector up to the four by four case is explicitly 
calculated in terms of the coefficients. A sketch of a proof that in the three by three 
case the left eigenvector is the reciprocal of the right eigenvector appears in Chapter 
7. We then illustrate the ideas with an example. This procedure may be generalized to 
a hierarchy decomposed into clusters and elements whose numbers in each is at most 
four. There is no theoretical difficulty in decomposing any hierarchy this way. The 
fourth topic deals with computing a table of national input-output coefficients and 
thus also illustrates how to develop priorities when there is interdependence among 
the activities. The table was generated by expert econometricians through elaborate 
techniques, and is given here of comparison purposes. It will be seen that the results 
are close and our approach may be used to make a first cut estimate of input-output 
tables. The final useful application deals with resource allocation by using a benefit 
hierarchy and a cost hierarchy and goes on to give other examples to illustrate the 
effectiveness of the AHP in this important field of application. Finally, we mention in 
passing some results of research done on probabilistic judgments and their 
interpretation. This may be useful in doing statistical analysis of judgments obtained 
from many people. 
 
 
 
5-2 EXPECTED VALUES BY THE AHP: PREDICTION 
 
The following example is used as illustration, not as conclusive evidence of the fact 
that people’s judgments can produce results in close agreement with scientific 
projections made by experts based on a number of factors. 

Two sets of people participated in a hierarchical approach to estimate the 
family size. (One group considered the subject from World War II to the early 1970’s 
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and the other looked ahead to the 1980’s.) The first group developed the following 
hierarchy of levels and factors in each level. 

 
Level 1.  The average number of children in a U.S. family. 
Level 2.  Years of education, income, size of present family, religion, and intensity of 

work for the mother. 
Level 3.  High, medium, low for each factor in level 2. 
Level 4.  The expected number of children from 1 to 5 in a family. 
 
The result was that five factor dominated according to the priority of their 
contribution of family size between World War II and early 1970’s. They were: low 
years of education, low income, high income, medium years of education, and high 
religion. Their priorities were then normalized. 

We now note that a high priority factor, which affects the size of a family such 
as high income, may not occur with the frequency that medium income or high 
religion occur in the population. Thus, we must estimate the relative frequency of 
occurrence of these factors in the population using pairwise comparisons, obtain the 
eigenvector, and multiply the corresponding components of the two eigenvectors, the 
original and the population oriented one, and then normalize over the factors of the 
new vector to obtain a net relative priority for each high priority factor according to 
its distribution in the population. Finally, the eigenvectors for the dominance of the 
number of children according to each of the five factors were weighted each by their 
corresponding component of the renormalized vector. The result was as follows 
 
Number of children  1  2  3  4  5 
Priority  0.087  0.191  0.282  0.292  0.150 
 
The expected number of children is 

 
0.087 × 1 + 0.191 × 2 + 0.282 × 3 + 0.292 × 4 + 0.150 × 5 = 3.23 

 
Later it was determined that demographer’s projections for the average number of 
children born to women who themselves were born in the period 1923-27 was 3.10 
and for those born in the period 1928-32 was 3.14, both sets mothering children of the 
period after World War II. 

The second set of people looking ahead to the average family size used the 
following factors; availability of birth controls and abortion, working mother, older 
age at motherhood, education of mother, cost of raising children, and social pressure. 
The eigenvectors of those factors did not require demographic smoothing; they were 
considered to be homogenously distributed. There was no consideration of high, 
medium, or low values of the factors. Prioritization of the number of children with 
respect to these five factors resulted in the following eigenvector,  

 
 
Number of children  0  1  2  3  4 
Priority  0.028  0.174  0.495  0.239  0.064 
 
leading to 2.14 as the expected number which compares with 2.11 as projected by 
grove demographers for the 1980’s. 
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In a corporate application of the method to estimate sales increase despite the 

impact of inflation, recession, and rise in energy cost, the three criteria were first 
prioritized. Then sales increases were divided into the ranges 0-5 percent, 6-10 
percent, 11-15 percent, and 15-20 percent. These four ranges were used as elements to 
be compared in separate matrices according to their likelihood of occurrence under 
each of the three criteria. The average rate of increase was calculated as we did with 
family size. The mean can be used to calculate the variance. 
 
 
5-3 MARGINAL PRIORITIES 
 
So far in our study of prioritization we have compared activities with respect to 
criteria on the assumption that a criterion could be thought of in some average form. 
For example, when we compared schools according to friends we were not concerned 
with the possibility that the number of friends may be small or large, for then the 
desirability of the schools may be different. 

There are two ways to cope with this problem. The first is to parameterize 
the number of friends along lines we just indicated, e.g., no friends, a few friends, 
more than a few, many, and so on. But this approach has a certain amount of 
fuzziness attached to it, since the number does not seem to have direct bearing on the 
property of friendliness and how much of it one may be scaling. One individual may 
have a greater or a lesser capacity for being a friend than another. 

A more useful approach is to compare the schools according to their 
desirability if the criterion of friends were increased or decreased by one more (a 
unit!) friend. This type of marginal analysis may be carried out in several iterations. 
The result is a set of eigenvectors which yields a law for the variation of the 
desirability of each school with respect to the number of friends, or amount of 
friendliness one may also be seeking. For many problems this would more faithfully 
represent the dynamics of a problem, since a marginal increase in the property could 
affect the criteria differently, depending on the level of saturation (analogous to the 
derivative of a function, whose value generally differs from point to point). The 
approach may be generalized to an entire hierarchy, but the computations would be 
demanding and tedious. 

The eigenvalue method may be used to develop an eigenvector measure for 
marginal changes in the properties being considered. These, of course, need not 
coincide with the eigenvector which represents the dominance of the properties. The 
following should be taken as an illustrative example rather than as a precise 
representation of a problem. Let us first do the usual dominance analysis matrix with 
its eigenvector, and follow it by the marginal analysis matrix with its eigenvector. 

We have as an example a highway construction man who was unemployed 
and who has just got a job. His preferences are illustrated over the following 
properties involved. 
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 A B C D E F 
A 1 6 5 3 7 9 
B 0.17 1 0.25 0.2 4 3 
C 0.2 4 1 0.33 3 4 
D 0.33 5 3 1 6 7 
E 0.14 0.25 0.33 0.17 1 0.2 
F 0.11 0.33 0.25 0.14 5 1 

 
max = 6.79,      C.I. = 0.16,       C.R. = 0.13 

 
A: Money 
B: Teamwork participation 
C: Good working conditions 
D: Shorter hours 
E: Variety of tasks 
F: Autonomy 
 

The largest eigenvalue of this matrix is equal to 6.79. The eigenvector is 
(0.448, 0.076, 0.135, 0.257, 0.031, 0.052). This indicates that money is by far the 
most important property of the job, followed by short hours, good teamwork, and so 
on. 

The entries of the following marginal comparison matrix are estimated by 
answering the question, “Having gotten the job, how much more does the man prefer 
an incremental change in a property over an incremental change in another property?” 
 

 A B C D E F 
A 1 0.14 0.2 0.333 3 6 
B 7 1 3 3 5 7 
C 5 0.333 1 3 3 3 
D 3 0.333 0.333 1 5 5 
E 0.333 0.2 0.333 0.2 1 4 
F 0.17 0.14 0.333 0.2 0.25 1 

 
max = 6.87,      C.I. = 0.17,       C.R. = 0.14 

 
The largest eigenvalue of this matrix is 6.87. The eigenvector is (0.093, 

0.409, 0.236, 0.166, 0.062, 0.034). In this case he favors a marginal improvement in 
teamwork participation, followed by good working conditions, then by short working 
hours, and so on. 

This kind of analysis should enable him to look at the job not simply from 
the standpoint of its initial merits, but from the potential capabilities of the 
management to make the kind of marginal improvement which he values most highly. 
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5-4 DYNAMIC JUDGMENTS AND THE EQUATION 
A(t)w(t) = max(t)w(t) 
 
The question often arises in the regard to the use of the Analytic Hierarchy Process: 
What would one do if the judgments were to change? A simple answer to that 
problem is that one should solve the new problem. But this is not what people usually 
have in mind. Presumably what they would like is a parameterized eigenvector 
solution as a function of time in order to make the implementation compatible, not 
just with what people think now, but what they are likely to think later on. Thus one 
would like an analytic solution of the eigenvalue problem A(t)w(t) = max(t)w(t). 

Judgments by their very nature may be expected to vary according to 
different situations. If they follow a known trend corresponding to a particular 
parameter, then one could adjust the judgments to follow the changes in the 
parameter. For example, a combat pilot may have a number of strategies to choose 
from depending upon the speed of his aircraft, his distance from an enemy aircraft or 
on the amount of fuel in the tanks. The importance of one strategy over another would 
then be a function of speed or distance or amount of fuel. One way to solve this 
problem is to repeatedly fix the value of the time parameter and then use curve fitting 
for the different values obtained for each the eigenvector components. 

An elegant approach would be to decompose the hierarchy into clusters 
whose number does not exceed four in a cluster of comparisons, obtain the solution 
for max as a function of the coefficients by solving a quadratic, a cubic, or a quartic as 
the need may be, and then solve the eigenvalue problem explicitly in terms of the 
coefficients and also in terms of max. One could then apply the hierarchical 
composition principle to obtain the overall weighting as a time-dependent function. 

It is well known according to Galois theory, that by using simple quadrature 
n = 4 is the highest order matrix for which we can obtain solution for max in closed 
form. As we said before, if one insists on using higher order matrices one should enter 
static numerical judgments provided for different periods of time and solve the 
corresponding problem. 

For the pairwise comparison judgments one may attempt to fit one of the 
functions given in Table 5-1 to the changing judgments. These functions have been 
left in parametric form so that the parameter may be set for the particular comparison, 
hopefully adhering to the 1-9 scale we have been using in the discrete case as a limit 
on the range of values (or any other convenient scale used in the discrete case). These 
functions reflect our intuitive feeling about change in trend: constant, linear, 
logarithmic, and exponential, rising to a maximum and declining, or falling to a 
minimum and rising, oscillating, and finally, allowing for catastrophic change. 
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Table 5-1 Dynamic judgments 
 

Time-dependent 
importance 
intensity 

 
 
Description 

 
 
Explanation 

 
 
 
a1t + a2 
 

 

 

 

b1 log (t+1)+b2 

 
 
 

31
2 cec

tc   

 
 
 
 
 
d1t

2+d2t+d3 
 
 
 
 
 
 

  321 sin eette n 
 
 

 

Catastrophes 
 

Constant for all t, 1    9 an integer 
 
 
Linear relation in t, increasing or 

decreasing to a point and then a 
constant value thereafter. Note 
that reciprocal is a hyperbola. 

 
Logarithmic growth up to a certain 

point and constant thereafter 
 
 
Exponential growth (or decay if c2 is 

negative) to a certain point and 
constant thereafter (not reciprocal 
of case c2 is negative is the 
logistic S-curve) 

 
A parabola giving a maximum or 

minimum (depending on d1 being 
negative or positive) with a 
constant value thereafter. (May be 
modified for skewness to the right 
or left) 

 
Oscillatory 
 

 
 
Discontinuities indicated 
 

No change in relative 
standing 

 
Steady increase in value of 

one activity over 
another 

 
 
Rapid increase (decrease) 

followed by slow 
increase (decrease) 

 
Slow increase (decrease) 

followed by rapid 
increase (decrease) 

 
 

 
Increase (decrease) to 

maximum (minimum) 
and then decrease 
(increase) 

 
 
 
Oscillates depending on 

n>0 (n  0) with 
decreasing (increasing) 
amplitude  

 
Violent change in intensity 

 
 
Quadratic Case 
 

For this case max ( ) 2t   and our time-dependent eigenvalue problem is given by 
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
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From which we have 
 

       
       twtwtatw

twtwtatw

221

121

2/

2




 

 
The first equation yields 
 

1 2( ) ( ) ( )w t a t w t  

 
which is also what we can obtain from the second equation. These two equations 
cannot be independent, otherwise the determinant of A(t) would not be zero and we 
would not have a nonzero solution. Thus, we can fix w2(t) arbitrarily, e.g., put w2(t)=1 
from which we have w1(t) = a(t). The normalized right eigenvector has the form 
{a(t)/[a(t)+1], 1/[a(t)+1]}. The normalized left eigenvector is the componentwise 
reciprocal of this given by {1/a(t)[a(t)+1], 1/[a(t)+1]}. 
 
 
Cubic Case 
 
In a straightforward fashion, Morris (1979), by solving a cubic equation, showed that 
max for the three by three case with aji = 1/aij is given by 
 

1/3 1/3
max 13 12 23 12 23 13( / ) ( / ) 1a a a a a a     

 
Note that max is always  3 (we have proved that in general max  n). 

The system of equations corresponding to this problem is given by 
 

1 12 2 13 3 max 1

1 12 2 23 3 max 2

1 13 2 23 3 max 3

( ) ( ) ( ) ( ) ( )

( ) / ( ) ( ) ( ) ( )

( ) / ( ) / ( ) ( ) ( )

w t a w t a w t t w t

w t a w t a w t t w t

w t a w t a w t t w t





  

  
  

 

 
Put 1 1w  . The first equation becomes 

 

12 2 13 3 (1 )a w a w      

 
and the second 

2 23 3
12

1
(1 )w a w

a
     

We now solve for 2w and 3w . We have 











2

3

121323
2

)1(1

)/()1(

w

aaa
w
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where 
)1(132312  aaa  

 
In order to normalize the components we form 
 

2
12 23 13 23 13 12

1 2 3

( 1) ( 1) ( / ) 1 (1 )a a a a a a D
w w w

         
   

 
 

  
Thus finally, 
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For the left eigenvector which is the elementwise reciprocal of the above we have: 
 

    

 

 

E
v

E
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E
v










3

231312
2

2

1

/1

11





 

where 
 

     1/1111 132312231312
2   aaaaaaE  

 
 

Quartic Case 
 
Consider the four by four matrix with reciprocal entries, all functions of time t 
 

    





















ifec

fdb
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A

/1/1/1
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1

 

 
Note that all the coefficients may be functions of a parameter t.  The characteristic 
equation of this matrix is 
 

4 34 ( 8) ( 5) 0B B C          
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where 
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We consider reduction of the quartic as follows. We write 
 

2 2 2( 2 ) ( 8) ( 5) 4B B C           
Adding 

2 21
( 2 )

4
r r    

 
(where r is a parameter) to both sides we have  
 

2 2 2 21 1
( 2 ) ( 4) ( 8 2 ) ( 5)

2 4
r r B r r B C               

 
The right-hand side is a perfect square of a linear function in  if and only if its 
discriminant is zero, i.e. 

 2 2

3 2

1
( 8) 2 4 ( 5) ( 4)

4

  4( 3) ( 16 16 ) 0

B r r B C r

r C r B C

           
        

 

 
which is called the resolvent cubic equation of the quartic.  
Whenever r is a root of this equation we have 0  . 

We have  
2

2 2

2

1 2( 4)
( 2 ) ( 4)

2 2( 4)

                         ( 4) 1
2( 4)

B r
r r
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B
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  
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 
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from which we get, using the largest value of r 
 

max

2 4 8

2 4 2 4

r r B

r
   

  


 

 
Now let us look at the solution of the cubic. The resolvent cubic may be put in the 
form 
 

3 0r pr q    
where  

4( 3)p C    
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and  
216 16q B C    

Using the transformation 

3

p
r z
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the resolvent is transformed to 
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p
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and this equation is a quadratic in 3.z   

So the solutions are 
3
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Now the cube roots of unity are 
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We obtain the following six solutions 
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It is known that the roots of the reduced cubic equation 3 0r pr q    are given by 
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Therefore  
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When 1 2 ,  R=0 T T and 1/3

2 3 ( / 2)r r q    is real. Also, 1/3
1 2( / 2)r q  .  

In addition, since complex roots occur in conjugate pairs, 1r is always a real root of the 

resolvent cubic. This follows from the fact that 0.p   To see this, we note that C has 
three terms of the form 1/ .x x The minimum value of such a term is 2. Hence 

3C   and 4( 3) 0.p C    Thus, 1r r  is always real. In addition, 0r   since 

0.q   This follows from 
 

2

2

16 16

16(1 )

B C

B C

 

 
 

 
Now the minimum of 16(1 )C is 64. 

Similarly the minimum value of 2B is 64.  Thus 0.q   
Now, the first term in r1 is positive.  The second term is always dominated by 

the first term.  Thus  1 0r r  is what we use in the expression for max above. 

The solution of the system maxAw w  which in expanded form is given by 
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when normalized, is 
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REMARK It is easy to see from this solution that if any coefficient is increased 
(decreased) in a given row of the pairwise comparison matrix the value of the 
eigenvector component corresponding to that row is increased (decreased) relative to 
the remaining components. This property holds in general for a reciprocal matrix.  
 

To end this section let us consider the simple case of a family consisting of a 
father, a mother, and a child. Obviously the amount of time the child spends at home 
will depend on his age. The infant would spend the same amount of time as the 
mother and then, as he grows older, he will progressively spend less time at home as 
compared to the time spent by the mother. We assume that the mother does not go out 
to work. 

If we were to compare the length of time spent at home by mother and child 
and plot this relation as a function of time (i.e., as the child grows older), we would 
get the type of curve shown in Fig. 5-1. 
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Figure 5-1 
 
  

Thus the curve begins with mother and child spending the same amount of 
time, than the ratio of mother’s to child’s time increases until it levels off by the time 
the child is in his mid-teens. 

Comparison of father to child times yields a relationship which is a mirror 
image of the above -reflected about a horizontal axis halfway up the curve. This is 
illustrated in Fig. 5-2. The relative length of time spent by father and mother would 
not vary too much and could be expected to be fairly constant. 

If we were to make a pairwise comparison of the different lengths of time 
spend at home by the different members of the family, we would get a sequence of 
comparison matrices each corresponding to a particular period of time. 

Consider the time period corresponding to the child’s age 0-4 years. If we 
were to exclude, say, eight hours of the night, we would expect the mother and child 
to spend about two to three times the length of time the father spends at home. The 
mother and child would of course spend the same amount of time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-2 
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This would give rise to the following matrix 
 

    

F M C
F 1 1/2.5 1/2.5
M 2.5 1 1
C 2.5 1 1

 
  max = 3.0,      C.I. = 0.0,       C.R. = 0.0 

 
This yields the following eigenvector for their relative times at home 

 
F :  0.167 
M:  0.417 
C :  0.417 

 
which is a reasonable reflection of the proportions of time they each spend at home. 

Around the age of four the child begins school, so there is a sudden change in 
the relative proportions of time spent at home by mother and child and by father and 
child. 

We can express the varying proportions in a single matrix using a time-
dependent expression for these proportions we have 

 
F M C

F 1 1/2 1/(3-In t /2)
M 2 1 0.4+In t/ 2
C 3-ln t /2 1/(0.4+In t /2) 1

 
where t denotes the time ranging between 4 and 16 years. 

This matrix, along with the previous one, gives rise to the curves in Figs 5-3 
5-5 which depicts the corresponding pairwise comparisons as time varies from zero 
to 16 years. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-3   Mother and child: age 0-16 years 
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Figure 5-4   Father and mother: age 0-16 years 
 

 
The solution of the maximum eigenvalue problem corresponding to these 

pairwise comparison curves for (4  t  16) is 
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The corresponding eigenvector is given by 
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Figure 5-5   Father and child: age 0-16 years 
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As the child finishes school, he begins spending even less time at home than 

the father. The proportions once again become fairly constant and are reflected in the 
following (consistent) pairwise comparison matrix. 
     

    

F M C
F 1 0.5 1.25
M 2 1 2.5
C 0.8 0.4 1

 
max = 3.0,      C.I. = 0.0,       C.R. = 0.0 

 
whose eigenvector solution is given by 

F :  0.263 
M:  0.526 
C :  0.211 

 
Plotting these results together for 0  t  4, 4  t  16, and 16  t gives a realistic 
representation of the relative time, with respect to all others, which each spends at 
home (see Fig. 5-6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-6   Relative proportion of time spent at home 
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5-5  MEASURING DEPENDENCE BETWEEN ACTIVITIES; 
INPUT-OUTPUT; APPLICATION TO THE SUDAN 
 
For brevity, in our study of dependence we focus on input-output type of relations. 
Input-output matrices in economics are obtained in general as follows. 

Given N sectors (of an economy) A1, A2, …., AN, and given a matrix S whose 
sij entry indicates the output from sector i which becomes an input to sector j. The net 
output from sector i to final (consumer) demand we denote by Yj. We have 
 

jjj

j

N

i
ij

OYS

Ss




1

 

 
The technological coefficients are obtained as follows 
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To obtain the matrix of technological coefficients by the AHP we must estimate sij/Sj 
and Sj/Oj. Let us see what these represent. Sj/( Sj + Yj) represents the proportion of the 
total output of sector j allocated to domestic consumption. The total output is 
estimated, for j = 1…, N, by means of the AHP by asking the following question: 
How strong is one sector compared to another when allocating outputs to domestic 
needs? If this question cannot be answered directly, domestic needs may be 
hierarchically decomposed into production, demand, labor, capital, and cost and the 
sectors are prioritized separately with respect to each criterion, and after prioritizing 
these criteria according to their impact on production, composition is used to obtain 
an overall measure of importance for the sectors. Let us denote the estimates of (Sj/Oj) 
by xj. 

Again, sij/Sj represents the proportion of the total intermediate output from 

sector i allocated to sector j. We have 1/
1




n

i
jij Ss . We construct a matrix of 

pairwise comparisons among the sectors as they relate to sector i. We answer the 
following question. How strong is the dependence of one sector in comparison with 
another in receiving output from sector j? The result is a matrix of pairwise 
comparisons which yields a column eigenvector of weights. When this is done for 
each sector we obtain a matrix W whose columns are these eigenvectors. 

Finally, we take the product elementwise of each column of the matrix W 
with the column vector x = (x1, x2,…., xN) to obtain the estimates of the technological 
coefficients, i.e., the input-output matrix. 

Total intermediate output of sector j 
(domestic needs from other sectors) 
 

total output of sector i 
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The most important fact we have to take consideration when the matrix of 
technological coefficients is estimated by means of the hierarchical approach is the 
proportion of total intermediate outputs for each sector in relation to the total output. 
This proportion was estimated in this example by extensive study of the literature on 
the Sudanese economy available at the time (Saaty and Vargas, 1979). 

We have considered the following six sectors.  
 
(1) Agriculture (AGR) 
(2) Public utilities (PU) 
(3) Manufacturing and mining (M&M) 
(4) Transportation and distribution (T&D) 
(5) Construction (CONS) 
(6) Services (SERV) 
 

The Sudan is considered mainly as an agricultural country. At the time the 
econometric models were constructed (1973) and the input-output analysis was done, 
the data used were from the year 1961. The major problem of the Sudan was the lack 
of an adequate transport system. To make the same order of magnitude comparison 
with Agriculture and Transportation (another major activity), the other sectors were 
grouped into an aggregate. We have 

 
    Public Utilities 
  Aggregate Manufacturing and Mining 
  (AGG)  Construction 
    Services 
 
The question to be asked to form the matrices of pairwise comparisons is: Given two 
sectors, i and j, which sector allocates more of its outputs to satisfy domestic needs 
(total intermediate outputs)? We first compare the elements in the aggregate, then 
separately compare the aggregate to compose the relevant weights from the four 
sectors in the aggregate itself. To save space we have not written out justifications of 
the judgments, which are available in a separate study. 
 
 Satisfaction 

of  
domestic  
needs PU M&M CONS SERV Eigenvector 

AGG: PU 
M&M 
CONS 
SERV 

1 
2 
2 
3 

1/2 
1 
1 
1 

1/2 
1 
1 
1 

1/3 
1 
1 
1 

0.127 2 
0.280 4 
0.280 4 
0.312 0 

max = 4.02,       C.I. = 0.007,        C.R. = 0.007 
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Satisfaction 
of 
domestic 
needs AGR T&D AGG Eigenvector 
AGR 
T&D 
AGG 

1 
2 

1/2 

1/2 
1 

1/2 

2 
2 
1 

0.310 8 
0.493 4 
0.194 8 

max = 3.05,       C.I. = 0.025,        C.R. = 0.04 
 
 
We have for the relative importance of the sectors: 
 

 
Sectors 

Final weights 
Si(Si + Yi) 

Estimates of 
Yi(Si + Yi) 

1 
2 
3 
4 
5 
6 

0.310 8 
0.024 8 
0.054 6 
0.493 4 
0.054 6 
0.060 8 

0.689 2 
0.975 2 
0.945 4 
0.506 6 
0.945 4 
0.939 2 

 
Now we identify the relationships among the sectors. They are given by the 

rows of Table 5.2. 
 
Table 5-2 
I.O. AGR PU M&M T&D CONS SERV 
AGR 
PU 
M&M 
T&D 
CONS 
SERV 

X 
X 
X 
X 

 
 
 
X 
 
X 

X 
X 
 
X 
 
X 

X 
X 
X 
 
 
X 

X 
 
X 
X 
 
X 

 
X 
X 
X 
X 
X 

 
Given a certain sector i we ask: for any two sectors, h and k, to which sectors 

are more products from sector i allocated? The following matrices answer the 
question for each sector. 
 
Agriculture 
 
The main crop in the Sudan is cotton. Cotton is exported and also allocated to the 
manufacturing sector. Thus agriculture, transportation and distribution, and 
construction do not receive a large amount of agricultural products. A new aggregate 
is formed. (Note that only four sectors are considered under agriculture.) 
 
 
 
 
 

Aggregate 
(AGG) 

Agriculture 
Transport and distribution 
Construction 
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As we pointed out above, the main problem in the Sudan is lack of 
transportation. We aggregated the two sectors which do not consume substantial 
quantities from agriculture, AGR and T&D, because, although the main crop after 
cotton is wheat, the agricultural sector allocates most of its output (i.e., wood) to 
construction. Transportation is being developed by means of loans from Arab oil 
countries and the World Bank. Thus, we also aggregated agriculture and 
transportation to form a sub aggregate. 
 

 
Input from 
agriculture AGR T&D Eigenvector 

SUBBAG: AGR 
T&D 

1 
1/9 

9 
1 

0.900 0 
0.100 0 

max = 2.0,       C.I. = 0.0,        C.R. = 0.0 
 

 
Input from 
agriculture SUBAGG CONS Eigenvector 

AGG: SUBAGG 
CONS 

1 
9 

1/9 
1 

0.100 0 
0.900 0 

max = 2.0,       C.I. = 0.0,        C.R. = 0.0 
 

 
Input from 
agriculture AGG M&M Eigenvector 

 AGG 
M&M 

1 
3 

1/3 
1 

0.25 
0.75 

max = 2.0,       C.I. = 0.0,        C.R. = 0.0 
 

Sectors Final Weights 
1 
2 
3 
4 
5 
6 

0.022 5 
0.000 0 
0.750 0 
0.002 5 
0.225 0 
0.000 0 

 
Note: The weights of AGR and T&D are obtained as follows. 
 


















5 002.0

5 022.0
)25.0()1.0(

1.0

9.0
   

D&T

AGR
 

 
The weight of construction is obtained by multiplying (0.9) by (0.25) = 0.225. 
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Public Utilities 
 
Input from 
PU AGR M&M T&D SERV Eigenvector 
AGR 
M&M 
T&D 
SERV 

1 
9 
7 
5 

1/9 
1 

1/2 
1/5 

1/7 
2 
1 

1/3 

1/5 
5 
3 
1 

0.041 0 
0.524 2 
0.303 0 
0.131 8 

max = 4.12,       C.I. = 0.04,        C.R. = 0.04 
 

Manufacturing and Mining 
 
Input from 
M&M AGR T&D CONS SERV Eigenvector 
AGR 
T&D 
CONS 
SERV 

1 
2 
9 
1 

1/2 
1 
5 

1/3 

1/9 
1/5 
1 

1/9 

1 
3 
9 
1 

0.075 8 
0.162 8 
0.694 1 
0.068 1 

max = 4.03,       C.I. = 0.01,        C.R. = 0.01 
 
Transportation and Distribution 
 
Input from 
T&D AGR PU M&M CONS SERV Eigenvector 
AGR 
PU 
M&M 
CONS 
SERV 

1 
3 
2 
2 

1/7 

1/3 
1 
1 

1/2 
1/9 

1/2 
1 
1 
1 

1/7 

1/2 
2 
1 
1 

1/7 

7 
9 
7 
7 
1 

0.140 0 
0.343 4 
0.259 6 
0.226 0 
0.031 0 

max = 5.11,       C.I. = 0.03,        C.R. = 0.03 
 
 
Construction 
 

Construction only gives its products to services. Thus we associate the value 
1 with services. 

Services in the Sudan are very poor. We have assumed that the allocation of 
service outputs to services, and to construction, are so negligible that these two could 
be aggregated. We have 
 
 
 
 

Aggregate (AGG) 
Construction 
Services 
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Input from 
services CONS SERV Eigenvector 

AGG: CONS 
SERV 

1 
1/9 

9 
1 

0.900 0 
0.100 0 

max = 2.0,       C.I. = 0.0,        C.R. = 0.0 
 
 
Services 
 
Input from 
Services PU M&M T&D AGG Eigenvector 
PU 
M&M 
T&D 
AGG 

1 
2 
2 

1/3 

1/2 
1 
1 

1/5 

1/2 
1 
1 

1/5 

3 
5 
5 
1 

0.193 0 
0.368 0 
0.368 0 
0.070 4 

max = 4.004,       C.I. = 0.001,        C.R. = 0.001 
 
 
The weights of construction and services are obtained by multiplying 0.070 4, the 
weight of the aggregate by 0.9, 0.1, respectively. 
 
 

Sectors Final weights 
1 
2 
3 
4 
5 
6 

0.000 0 
0.193 0 
0.368 0 
0.368 0 
0.063 4 
0.007 0 

 
 

The matrix whose rows are the foregoing eigenvectors gives the distribution 
of total intermediate outputs to the sectors. It is given by Table 5-3. 
 
Table 5-3 
 
 Producers AGR PU M&M T&D CONS SERV 
Shares of 
the total 
intermediate 
outputs 

 
AGR 
PU 
M&M 
T&D 
CONS 
SERV 

 
0.022 5 
0.041 0 
0.075 0 
0.140 0 
0 
0 

 
0 
0 
0 
0.343 4 
0 
0.193 0 

 
0.750 0 
0.524 2 
0 
0.259 6 
0 
0.368 3 

 
0.002 5 
0.303 0 
0.162 8 
0 
0 
0.368 3 

 
0.225 0 
0 
0.684 1 
0.226 0 
0 
0.063 4 

 
0 
0.131 8 
0.068 1 
0.031 0 
1 
0.007 0 
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At the beginning we computed how strongly the sectors allocate outputs to 

domestic needs. The vector of weights was 
 

AGR 
PU 
M&M 
T&D 
CONS 
SERV 

0.310 8 
0.024 8 
0.054 6 
0.493 4 
0.054 6 
0.060 8 

 
Thus we multiply each column of the above matrix by this vector (element-wise 
multiplication), e.g., for the first column we have 
 

0.022 5 × 0.310 8 
0.041 0 × 0.024 8 
0.075 0 × 0.054 6 
0.140 0 × 0.493 4 
     0      × 0.054 6 
     0      × 0.060 8 

= 

0.007 0 
0.000 9 
0.004 1 
0.069 1 
     0 
     0 

 
The weighted matrix is then given by Table 5-4. 
If we compare the matrix of Table 5-4 with the input-output matrix obtained by 
traditional methods (Table 5-5), we see that there are few differences. 
 
Table 5-4 
 
 AGR PU M&M T&D CONS SERV 

AGR 
PU 
M&M 
T&D 
CONS 
SERV 

0.007 0 
0.000 9 
0.004 1 
0.069 1 
0 
0 

0 
0 
0 
0.169 4 
0 
0.011 7 

0.233 1 
0.013 0 
0 
0.128 1 
0 
0.022 4 

0.000 8 
0.007 5 
0.008 9 
0 
0 
0.022 4 

0.069 9 
0 
0.037 9 
0.111 5 
0 
0.003 9 

0 
0.003 3 
0.003 7 
0.015 3 
0.054 6 
0.000 4 

 
 
Table 5-5 
 
 AGR PU M&M T&D CONS SERV 

AGR 
PU 
M&M 
T&D 
CONS 
SERV 

0.007 37 
0.000 24 
0.003 93 
0.069 93 
0 
0 

0 
0 
0 
0.145 36 
0 
0.010 30

0.219 53 
0.011 59 
0 
0.125 74 
0 
0.025 49

0.000 42 
0.006 18 
0.008 57 
0 
0 
0.024 22

0.067 21 
0 
0.042 16 
0.098 79 
0 
0.005 20 

0 
0.002 83 
0.003 22 
0.006 41 
0.054 02 
0.000 21
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The factors involved in this problem were purely economic. This suggests 

extending this type of analysis to study social systems and particularly to introduce 
social factors in the resource allocation problem (a problem briefly mentioned by V. 
Leontief, the founder of input-output analysis) when the activities are interrelated. As 
of this writing, a project has been undertaken to carry out this research in the social 
domain. 

To introduce the concept of interdependence priority as a single number, we 
first observe that activities may be interdependent from the standpoint of some of the 
properties represented in the hierarchy, but not all. For example, in production, 
activities may depend on each other in the flow of physical material but not on their 
particular contributions to the economy, defense, or welfare. 

The interdependence priority numbers are computed as follows. Each row of 
an input-output-type matrix is again weighted elementwise by the independence 
weight of the corresponding recipient activity. The reason for this is that if we were to 
sum over each row to obtain how much material flows from an activity to all other 
activities as an indication of the priority of their dependence on it, we must weight the 
amount received by the importance of the receiving activity. Otherwise a low priority 
activity supplying a great amount of material to another low priority activity would 
receive a high priority. Of course the receiver may in turn supply material to a high 
priority activity. To take into consideration all such second and higher order 
interactions, we must raise the resulting matrix to higher and higher powers and for 
the priorities we need to take the normalized sum of the rows of the limiting matrix. 
But we know that this result can be obtained by solving the largest eigenvalue 
problem, taking care that we work with irreducible primitive submatrices of the 
original matrix if necessary. Application of the foregoing to the input-output matrix of 
the Sudan by multiplying its rows elementwise by the independence priorities and 
obtaining the principal eigenvector yields: (0.14, 0.10, 0.11, 0.33, 0.06, 0.26) for the 
interdependence priority of the sectors with transportation receiving the lion’s share 
(as all sectors depend on it) and services the next highest. Both agriculture and 
transport are eventual consumers of services. This should be compared with the 
independence priority vector (0.31, 0.03, 0.06, 0.49, 0.05, 0.06) which is significantly 
different. These two vectors have different meanings for decision making. Note that 
we could have taken the normalized row sums of the weighted input-output matrix as 
estimates of the interdependence priorities. This is given by (0.16, 0.07, 0.05, 0.50, 
0.11, 0.12), not a satisfactory estimate. 
 
 
5-6 RESOURCE ALLOCATION 
 
In general terms, resource allocation is a transformation of a system from one state to 
another. For example, building a bridge transforms the state of transportation. The 
resource may take the form of materials, energy, time, or human effort, or a 
combination of them. Money is usually used to estimate the various amounts needed 
of each of these kinds of resources. By the laws of physics we cannot get something 
for nothing, i.e., effort is needed to change the state of a system. The resource must be 
found. 

To allocate a resource we need to look deeper into what is needed and how it 
should be allocated. A simple illustration would be to allocate the resource to several 
alternatives. To do this, we must prioritize the alternatives according to their benefits 
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and costs. Thus we need to look at the alternatives in terms of what purposes they 
fulfill and how strongly and also in terms of what it would cost to bring about these 
alternatives. It may be that two alternatives together may accrue a greater benefit to 
cost ratio than a single one. 

To calculate the benefits of alternatives we need to consider a hierarchy of 
objectives and attributes of alternatives and the alternatives themselves to judge how 
much they each contribute to the fulfillment of the objectives. There is usually 
uncertainty in estimating the impact of the alternatives. Thus we need a level in the 
hierarchy to represent uncertainty. This level must be followed by a representation of 
known and unknown technological factors associated with bringing about the 
outcomes. In this manner we can obtain an estimate of the priorities of the alternatives 
subject to uncertainty. 

The next step is to consider a hierarchy for the cost of bringing about the 
alternatives. Here the question to be asked is which alternative is like to present, what 
type of the problem and what has to be done to solve such a problem? Again an 
estimate of the problem and what it takes so solve it is often in the realm of the 
uncertain. Occasionally a prefeasibility study is needed to identify and look into both 
cost and benefit problems before constructing the hierarchies. 

There are several kinds of allocations followed in practice. The first is 
whether resources should be allocated to a given project or not. Here the alternatives, 
doing the project or not doing it, are compared in the lowest levels of the benefits and 
costs hierarchies. Comparison of the benefit to cost ratios would determine what to 
do. 

If there is doubt as to whether implementing a project is worth investing the 
resources, the alternatives to consider in the benefits and costs hierarchies are the 
project as one alternative and generating and saving the resource for future need as 
another alternative. There may be several alternatives to prioritize and the problem 
may be to allocate a measurable resource proportionately to their benefits. This is 
usually the case with research projects which require a continuous flow of resources 
over a long period. The question in this type of hierarchy is: which research area is 
likely to encounter serious difficulties to satisfy basic “virtues” represented in the 
hierarchy (subject to uncertainties). At other times we may wish to allocate a resource 
to projects to maximize their benefit to cost ratios. There are also times when the 
priorities serve as indicators of which project should receive funds and which should 
not. In a large number of cases where resources such as money are scarce, the 
financial cost of an alternative is used to represent its costs priority. We have made 
this kind of application in the Sudan Transport Study. A still more complex type of 
allocation involves interdependence among the activities and allocation must be made 
subject to interdependence constraints. This type of allocation would avoid penalizing 
a high priority activity by not making enough resources available to a lower priority 
activity on which it depends. 

There are three types of allocation problems of a resource of total amount X. 
 

(1) Total funding If we start with new projects which must be completed in the 
allocation period, we calculate their benefits bi and cost ci and relabel so that we 
can identify the projects according to the relation 

 
b1/c1  b2/c2    bn/cn 

 
and allocate the resource in decreasing order until it is depleted. 
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(2) Partial funding In case several projects must be started and monitored over 

several allocation periods, one allocates according to 
 

max)/(
1
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Thus we do not support a project which gets less than the relative value of its cost 
to the total resource available. 

(3) For projects that are already in progress one may allocate according to their 
remaining (marginal) priority to cost ratio. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

Figure 5-7 
 
 

REMARK It is clear that in some instances benefit to cost ratio is not what we want 
because some things will get implemented with low benefit but very low cost that are 
not needed. Therefore, requirements must first be set before applying benefit/cost 
analysis to the contenders. 
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Example 5-6-1  Benefits and Costs in Crossing a River 
 
A governmental agency (such as the New York Port Authority) which has jurisdiction 
over the building of bridges, tunnels, etc. in a certain area must decide on whether to 
build or not to build a tunnel and/or a bridge across a river presently served by a 
privately owned ferry. 

The factors which affect both the benefits and costs of crossing a river are 
given in two hierarchies, see Figs 5-7 and 5-8. These factors fall into three categories: 
economic, social, and environmental. The decision is made in terms of the ratios of 
benefits to costs. 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 5-8 
 
 
 
Benefits  The economic factors affecting the choice consist of the benefit derived 
from the time saved in using a new bridge or tunnel rather than using the existing 
ferry. The increased traffic from outside the area could bring in toll revenue which 
can add to the general income of the local government. The rise in commerce caused 
by this increased flow of traffic is seen as being beneficial to the community in 
general. Additionally, the traffic will aid the commerce nearby (such as gas stations, 
restaurants, etc.). There is also economic benefit from the construction jobs generated. 
If they were the only ones to consider, most of these factors could be calculated 
quantitatively. The associated cost could also be computed quantitatively. The 
associated cost could also be computed quantitatively and a benefit/cost ratio could be 
used to make the decision. But we have to consider social and environmental factors 
which do not translate in any reasonable way to dollars. 

The social benefits of the project are viewed to represent the benefits which 
the society as a whole will derive from the presence of a bridge or tunnel. They would 
provide greater safety and reliability than the ferry. They would also contribute to a 
greater number of trips across to visit relatives, friends, museums, etc. Finally, they 
could generate community pride not present to the same degree in using the ferry. 
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Environmental factors are viewed in terms of their contribution to individual 
personal benefits. Personal benefits differ from benefits to society, in that they are less 
abstract. The environmental factors of interest to an individual are the comfort of 
using the bridge, tunnel, or ferry, the ease of accessibility of one over the others, and 
the aesthetics affecting the choice of alternative for crossing the river. 
 
Costs  As with benefits, the costs of crossing a river also involve economic, social, 
and environmental factors. The three economic costs considered were the capital costs 
of the alternatives, the operating and maintenance costs associated with the three 
projects, and the economic consequence of not having a ferry boat business. 

The social costs again represent costs to society. The degree to which 
lifestyles are disrupted using the alternatives to cross the river was thought to be 
important. The congestion of traffic differs between the various modes of crossings 
and is also deemed an important cost. The final social cost is the effect on society of 
the dislocation of people from their homes according to the alternative chosen. 

Environmental costs differ from environmental benefits in that they represent 
possible harm done to the ecosystem by the various alternates. The various ways of 
crossing the river add to the amount of auto emissions in the area. Additionally, 
pollution of the water and the general disruption of the ecology were thought to 
contribute to environmental costs. 
 
Results  In the calculation of both benefits and costs, economic factors outweighed 
the other factors. The benefits derived from the commerce across the bridge, the 
added safety and reliability, and quick accessibility of crossing the river all received 
high priorities. 

As for costs, the capital required, the dislocation of people from their homes, 
and the amount of auto emission all received high priorities. 

The composite benefits and costs are as follows. 
 

 Bridge Tunnel Ferry 
Benefits (b1) 
Costs (c1) 

0.57 
0.36 

0.36 
0.58 

0.07 
0.05 

 
The criterion used in benefit/cost analysis is to find max bi/ci, that is, choose 

the project with largest benefit to cost ratio. 
 
For this example we have 

 
Bridge Tunnel Ferry 

58.1
1

1 
c

b
 62.0

2

2 
c

b
 28.1

3

3 
c

b
 

 
The criterion favors the construction of a bridge across the river. Note that this has 
taken into consideration the capital requirements. Marginal analysis with costs 

.05.36  .58 and benefits    .57,  .36, gives 
31.

5.
,

05.

07.
, and again favors the bridge. 
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Judgment matrices for benefits 
  
A B1 B2 B3 Eig B1 C1 C2 C3 C4 C5 Eig 
B1 
B2 
B3 

1 
1/3 
1/6 

3 
1 
1/2 

6 
2 
1 

0.67 
0.22 
0.11 

C1 
C2 
C3 

1 
3 
7 

1/3 
1 
4 

1/7 
1/4 
1 

1/5 
1/2 
7 

1/6 
1/2 
5 

0.04 
0.09 
0.54 

 C.I. = 0   C4 5 2 1/7 1 1/5 0.11 
     C5 6 2 1/5 5 1 0.23 
      C.I. = 0.14    
 
B2 C6 C7 C8 Eig B1 C9 C10 C11 Eig 
C6 
C7 
C8 

1 
1/6 
1/9 

6 
1 
1/4 

9 
4 
1 

0.76 
0.18 
0.06 

C9 
C10 
C11 

1 
4 
1/6 

1/4 
1 
1/8 

6 
8 
1 

0.25 
0.69 
0.06 

 C.I. = 0.05   C.I. = 0.07  
 
C1 D1 D2 D3 Eig C2 D1 D2 D3 Eig C3 D1 D2 D3 Eig 
D1 
D2 
D3 

1 
1/2 
1/7 

2 
1 
1/6 

7 
6 
1 

0.58 
0.35 
0.07 

D1 
D2 
D3

1 
2 
1/8 

1/2 
1 
1/9 

8 
9 
1 

0.36 
0.59 
0.05 

D1 
D2 
D3 

1 
1/4 
1/8 

4 
1 
1/6 

8 
6 
1 

0.69 
0.25 
0.06 

 C.I. = 0.02   C.I. = 0.02   C.I. = 0.07  
 
C4 D1 D2 D3 Eig C5 D1 D2 D3 Eig C6 D1 D2 D3 Eig 
D1 
D2 
D3 

1 
1 
1/6 

1 
1 
1/6 

6 
6 
1 

0.46 
0.46 
0.08 

D1 
D2 
D3

1 
4 
1/9 

1/4 
1 
1/9 

9 
9 
1 

0.28 
0.66 
0.05 

D1 
D2 
D3 

1 
1/4 
1/7 

4 
1 
1/6 

7 
6 
1 

0.68 
0.26 
0.06 

 C.I. = 0   C.I. = 0.11   C.I. = 0.09  
 
C7 D1 D2 D3 Eig C8 D1 D2 D3 Eig C9 D1 D2 D3 Eig 
D1 
D2 
D3 

1 
1 
1/5 

1 
1 
1/5 

5 
5 
1 

0.46 
0.46 
0.09 

D1 
D2 
D3 

1 
1/5 
1/3 

5 
1 
3 

3 
1/3 
1 

0.64 
0.11 
0.26 

D1 
D2 
D3 

1 
1/5 
1/8 

5 
1 
1/5 

8 
5 
1 

0.73 
0.21 
0.06 

 C.I. = 0   C.I. = 0.02   C.I. = 0.07  
 
C10 D1 D2 D3 Eig C11 D1 D2 D3 Eig 
D1 
D2 
D3 

1 
1/3 
1/7 

3 
1 
1/6 

7 
6 
1 

0.64 
0.29 
0.07 

D1 
D2 
D3 

1 
1/6 
5 

6 
1 
3 

1/5 
1/3 
1 

0.27 
0.10 
0.63 

 C.I. = 0.05   C.I. = 0.31  
 
Total benefits hierarchy C.R.H. < 0.1 (good). (Poor consistency in the last matrix 

does not affect final result because of low priority of C11). 
 
 
Example 5-6-2 Project Implementation and Deferral 
 
Suppose that the prioritization procedure yielded the following priority vector (second 
column) for a set of projects based on a hierarchical analysis of their impacts and 
suppose the cost for constructing these projects are given by third column):  



 112

 
Judgment matrices for costs 
 
A  1B  2B  3B  Eig 

1B  

2B  

3B  

1 

1/5 

1/7 

5 

1 

1/2 

7 

2 

1 

0.74 

0.17 

0.09 
 C.I. = 0.01  
 

1B  1C  2C  3C  Eig 
2B  4C 5C  6C Eig 

3B  7C  8C  9C  Eig 

1C  

2C

3C  

1 

1/7 

1/9 

7 

1 

1/5 

9 

5 

1 

0.77 

0.17 

0.06 

4C  

5C  

6C  

1 

3 

5 

1/3 

1 

3 

1/5 

1/5 

1 

0.11 

0.26 

0.64 

7C  

8C  

9C  

1 

1/3 

1/4 

3 

1 

3 

4 

1/3 

1 

0.62 

0.13 

0.25 

 C.I. = 0.1   C.I. = 0.02   C.I. = 0.11  
 

1C  1D  2D  3D  Eig 
2C  1D  2D  

3D

 

Eig 
3C  1D  2D  

3D  Eig 

1D  

2D  

3D  

1 

3 

1/8 

1/3 

1 

1/9 

8 

9 

1 

0.30 

0.65 

0.05 

1D  

2D  

3D  

1 

3 

1/8 

1/3 

1 

1/9 

8 

9 

1 

0.30 

0.65 

0.05 

1D  

2D

3D

1 

1 

1/9 

1 

1 

1/9 

9 

9 

1 

0.47 

0.47 

0.05 

 C.I. = 0.05   C.I. = 0.05   C.I. = 0  
 

4C  1D  2D  
3D  Eig 

5C  1D  2D 3D  Eig 
6C  1D  2D  

3D  Eig 

1D  

2D  

3D  

1 

1/4 

1/9 

4 

1 

1/8 

9 

8 

1 

0.69 

0.26 

0.05 

1D  

2D  

3D  

1 

1 

1/9 

1 

1 

1/9 

9 

9 

1 

0.47 

0.47 

0.05 

1D  

2D  

3D  

1 

1 

1/9 

1 

1 

1/9 

9 

9 

1 

0.47 

0.47 

0.05 
 C.I. = 0.09   C.I. = 0   C.I. = 0  
 

7C  1D  2D  
3D  Eig 

8C  1D  2D 3D Eig 
9C  1D  2D  

3D  Eig 

1D  

2D  

3D  

1 

1/3 

1/8 

3 

1 

1/6 

8 

6 

1 

0.65 

0.29 

0.06 

1D  

2D  

3D  

1 

1/3 

1/7 

3 

1 

1/5 

7 

5 

1 

0.65 

0.28 

0.07 

1D  

2D  

3D  

1 

6 

1/7 

1/6 

1 

1/8 

7 

8 

1 

0.21 

0.73 

0.05 
 C.I. = 0.04   C.I. = 0.03   C.I. = 0.16  
 
Total costs hierarchy C.R.H. < 0.1 (good). 
 
 

Projects Priorities Costs in $ Priority to  
cost ratio 

Priority of 
implementation 

A 
B 
C 
D 

0.21 
0.07 
0.42 
0.30 

10,000 
100 

70,000 
6,000

0.21 × 10-4

7      × 10-4 

0.06 × 10-4 

0.50 × 10-4 

3 
1 
4 
2 
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The fourth column gives the priority to cost ratio and the fifth indicates the 

suggested priority order of implementation corresponding to this ratio if the resources 
are unlimited and it is desired to proceed with the projects one at a time. Note that the 
lowest priority project B has the highest index, but D which has relatively high 
priority has the second highest index. This allocation need not take into consideration 
the presence of constraints of those constraints can themselves be included in the 
process of prioritizing the projects. If the resources are limited, e.g. to $72,000, and if 
partial implementation of a project is not a useful undertaking, resource allocation can 
be critical. Project C has high priority, but unless it is possible to borrow money, it 
may be deferred until there is adequate return from the other projects. 
 
Example 5-6-3  Allocation Subject to Constraints 
 
What is a rational basis for allocating fuel to meet demand for energy given that fuel 
supply is limited? This is the problem we wish to address here. 

It is clear that if the shortage is small, a correspondingly small cutback may 
be made in delivering fuel to consumers generally without adverse effects. Thus, a 
percentage cut at low levels of scarcity should not entail major difficulties. 

Now suppose that the shortage is sufficiently large that a corresponding 
amount of cutback would harm a consumer. For example, certain industries require a 
threshold amount of energy below which they cannot operate. In that case either the 
industry would have to rearrange and perhaps reduce is production activity if possible, 
or it may be forced to close down. Alternatively, fuel allocation may have to take into 
consideration the fact that some activities are essential to society and would have to 
get their required share of fuel while others may have to shut down. Thus, the 
problem is a matter of priority assignment and interdependence. Priority 
considerations are needed to decide which activities should have precedence. On the 
other hand, interdependence considerations are needed to insure that highest priority 
activities which receive some inputs from lower priority activities are not penalized 
indirectly by not making adequate fuel available to the lower priority activities on 
which they depend. 

Our goal would be to develop an objective function whose coefficients are 
priorities of the activities concerned and whose variables are the amount of fuel to be 
allocated to the corresponding activities. We would then maximize this objective 
function subject to input-output constraints indicating independence among the 
activities. 

Thus, the general allocation model requires the maximization of productivity 
according to priority (where the objective function has priority coefficients rather than 
cost coefficients), subject to an allocation constraint of a limited resource and to 

input-output constraints. It has the form: find xi  0 such that Max 


n

i
ii xw

1

 

subject to 

 



n

i
ii Rx

1

 (5-1) 

where 

 ),,2,1( miRxii   (5-2) 

 



 114

and 

 ),,1(
1

mixyxa
m

j
iijij 



 (5-3) 

Where all variables and coefficients are nonnegative, and where xi is the level of 
output of activity i, (appropriately measured in dollars, for instance); yi is the total 
amount of output of activity i that goes into final consumption (i.e., is not consumed 
by other activities for further production), and aij is the dollar input required from 
activity i for every dollar output of activity j.  

Also, wi is the priority of the ith activity, R is the total amount of resources 
available for allocation, Ri is the amount required by the ith activity (Ri  R) and yi is 
the amount of resource that is required by the ith activity per unit of output. 

Note that the first and second constraints are concerned with resource 
allocation. The additional constraints in (5-3) indicate the structural interdependence 
of the activities. Through the use of parametric programming, the space of priorities 
wi is tessellated with convex cells. With each cells is associated a vertex of the 
constraint polyhedron corresponding to a solution of the problem. Thus, small 
changes in wi generally do not lead to dramatic changes in the solution. It is 
interesting to note that the dual problem involves minimization of an objective 
function whose coefficients are yi (the final consumer products). It follows that 
variations in wi permit investigating this impact on consumer products yi. In 
particular, one may be able to determine a more implementable solution 
corresponding to changes in priorities. Thus, priorities need not be taken for granted. 

For the energy demand allocation problem to industries, let the priorities of 
three industries C1, C2, C3 according to their contribution to the economy, national 
defense, and environmental protection, be w1 = 0.55, w2 = 0.24, w3 = 0.21, 
respectively. Let us assume that we are given the following hypothetical input-output 
or interdependence matrix. 
 

 C1 C2 C3 
C1 
C2 
C3 

1.097 30 
0.079 90 
0.039 50 

0.226 80 
1.065 70 
0.332 10 

0.190 20 
0.060 10 
1.207 10 

 
In this example, we have not use the input-output constraints directly. 

Instead, we multiply the coefficient in the (i, j) position of the above matrix by wi and 
wj (wi gives the priority of producing activity Ci and wj gives the priority of the 
consuming activity Cj), thus deriving a new matrix of coefficients, each weighted 
according to the priorities of both producer and consumer. The sum is then taken over 
each row. This gives the vector 
 

 = 
0.386 59 
0.072 80 
0.075 23 
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Suppose that the energy requirements Ri (in trillion Btu) of the three users are 
as follows: 
 

Activity 
(Ci) 

Energy requirements 
(Ri) 

 
Ri/Total 

C1 
C2 
C3 

   4,616 
   7,029 
   3,297 

0.308 93 
0.470 42 
0.220 65 

Total 14,942  
 
Also assume that the total energy available has been cut back to a level of  

R = 12,000 Btu. We have the following linear programming problem. 
 
Maximize 

z = 0.386 59zi + 0.072 80z2 + 0.075 23z3 
 
whose coefficients are the corresponding elements of the vector , subject to 
 

0  z1  0.384 67 
0  z2  0.585 75 
0  z3  0.274 75 

 
in which the quantities on the right are, respectively, Ri/R, i = 1, 2, 3 and subject to  
 

z1 + z2 + z3 = 1 
 

The optimal allocation is given by 
 

z1 = 0.384 67 
z2 = 0.340 58 
z3 = 0.274 75 

 
Thus only C2 is not given its full requirement since 0.470 42 > 0.340 58. 

The decision-maker may use this allocation as an indicator only of which 
activities are to be rationed, and compare it with other information to be used in the 
allocation. 

We have applied the ideas of this example in a real-life electricity-rationing 
problem indicating the cutback of electricity (partial or complete) for the activities 
(see Saaty and Mariano, 1979). 
 
 
5-7 PROBABILITY JUDGMENTS 
 
We have undertaken an analysis of the eigenvector solution as the judgments are 
allowed to vary probabilistically. It turns out that a gamma distribution is a convenient 
way of representing this variation in judgments. As a result, in the solution of the 
consistent case the eigenvector components subject to the normalization constraint 
have a Dirichlet distribution. It is difficult to specify the distribution for the general 
reciprocal case. However, results are available for matrices of order 3. 
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CHAPTER  

THREE 
 

FOUNDATIONS AND EXTENSIONS  
 
 
 
3-1 INTRODUCTION 
 
This chapter introduces some further methodological observations. We begin with an 
explanation of the basic mathematical reasoning underlying our method. It leads, quite 
naturally, to the question why we chose a scale from 1 to 9 rather than any other of the 
possible scales. It will be shown that our scale is no worse than any other scale, has 
the advantage of simplicity, and is, appropriately, quite natural. In the remainder of 
the chapter we examine the process of revising judgments, give numerical 
calculations of all the eigenvalues and left and right eigenvectors for the wealth 
example, and discuss consensus in the Delphi method. Finally, we briefly discuss 
comparisons of triples, quadruples, and more. 
 
 
3-2 PRIORITY AS AN EIGENVECTOR: RELATION TO CONSISTENCY 
 
Let us consider the elements C1,…., Cn of some level in a hierarchy. We wish to find 
their weights of influence, w1, …., wn, on some element in the next level. As described 
in Chap. 1, our basic tool is a matrix of numbers, representing our judgment of 
pairwise comparisons. Here we show why the eigenvector with the largest eigenvalue 
is chosen to furnish the priorities. 

We denote by aij the number indicating the strength of Ci when compared 
with Cj. The matrix of these numbers aij is denoted A, or 
 

A = (aij) 
 

As noted before, aij = 1/ aij, that is, the matrix A is reciprocal. If our 
judgment is perfect in all comparisons, then aik = aij 

. ajk for all i, j, k and we call the 
matrix A consistent. 

An obvious case of a consistent matrix is one in which the comparisons are 
based on exact measurements; that is, the weights w1, …., wn are already known.   
Then 
 

nji
w

w
a

j

i
ij ,,1,      (2-1) 
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Also, of course, 
 

ijjii

j
ji awww

w
a

1

/

1
  

 
Let us consider this paradigm case further. As explained in App. 1, the matrix 
equation 
 

A . x = y 
 
where x = (x1, …., xn) y = (y1, …., yn), is a shorthand notation for the set of equations 
 

niyxa
n

j
iiij ,,1

1




 

 
Now, we observe that from Eqs (2-1) we obtain 
 

nji
w

w
a

i

j
ij ,,1,1   

 
and consequently 
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or 
 

ninwwa
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j
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which is equivalent to 
 

Aw = nw     (2-2) 
 
In matrix theory, this formula expresses the fact that w is an eigenvector of A with 
eigenvalue n. When written out fully this equation looks as follows 
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Let us turn to the practical case, in which the aij are not based on exact 
measurements, but on subjective judgments. Thus, the aij will deviate from the “ideal” 
ratios wi/wj, and therefore Eq. (2-2) will no longer hold. Two facts of matrix theory 
come to our rescue. 
 

The first one is this. If  1, …., n are the numbers satisfying the equation 
 

Ax = x, 
 
i.e., are the eigenvalues of A, and if aii = 1 for all i, then 
 

ni

n

i


1

 

 
Therefore, if (2-2) holds, then all eigenvalues are zero, except one, which is n. 
Clearly, then, in the consistent case, n is the largest eigenvalue of A. 

The second helpful fact is that if one changes the entries aij of a positive 
reciprocal matrix A by small amounts, then the eigenvalues change by small amounts. 

Combining these results we find that if the diagonal of a matrix A consists of 
ones (aii = 1), and if A is consistent, then small variations of the aij keep the largest 
eigenvalue, max close to n, and the remaining eigenvalues close to zero. 

Therefore, our problem is this: if A is the matrix of pairwise comparison 
values, in order to find the priority vector, we must find the vector w which satisfies 
 

Aw = maxw 
 
Since it is desirable to have a normalized solution, we alter w slightly by setting  





n

i
iw

1

and replacing w by (1/)w. This ensures uniqueness, and also that 

1
1




i

n

i

w . 

Observe that since small changes in aij imply a small change in max the 
deviation of the latter from n is a measure of consistency. It enables us to evaluate the 
closeness of our derived scale from an underlying ratio scale which we wish to 
estimate. Thus, as we said in Chap. 1, we take 
 

1
max




n

n
 

 
the consistency index, as our indicator of “closeness to consistency.” In general, if this 
number is less than 0.1, we may be satisfied with our judgments. 

It is useful to repeat that reported judgments may not only violate the 
consistency relation, but also may not be transitive; i.e., if the relative importance of 
C1 is greater than that of C2 and the relative importance of C2 is greater than that of 
C3, then the relation of importance of C1 need not be greater that of C3, a common 
occurrence in human judgments. An interesting illustration is afforded by tournaments 
regarding inconsistency or lack of transitivity of preferences. A team C1 may lose 
against another team C2 which has lost to a third team C3; yet C1 may have won 
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against C3. Thus, team behavior is inconsistent -a fact which has to be accepted in the 
formulation, and nothing can be done about it. Of course, our model may require 
transitivity internally; but the “reporting” procedure may scramble things. 

May (1954) has studied the idea that intransitivity among preferences may be 
a natural phenomenon and not a consequence of judgmental error or aberration. He 
concludes that there is no way to avoid considering intransitivity as a natural 
phenomenon. 

In an experiment 62 college students were asked to choose from three 
hypothetical marriage partners x, y, and z. In intelligence they ranked xyz, in looks yzx, 
in wealth zxy. The structure of the experiment was not explained. Subjects were 
confronted at different times with pairs labeled with randomly chosen letters. On each 
occasion x was described as very intelligent, plain looking, and well off; y as 
intelligent, very good looking, and poor; z as fairly intelligent, good looking and rich. 
All prospects were described as acceptable in every way, none being so poor, plain, or 
stupid as to be automatically eliminated. 

On defining group preferences by majority vote a circular pattern was 
indicated since x beat y by 39 to 23; y beat z by 57 to 5; and z beat x by 33 to 29. 

The choices were xyz: 21; xyzx: 17; yzx: 7; zyx: 4; xzy: 1; zxy: 0; xzyx: 0. 
The intransitive pattern is easily explained as the result of choosing the 

alternative that is superior in two out of three criteria. The orderings xyz and yzx seem 
to have resulted from giving heavier weight to intelligence and looks, respectively. 
The four who chose inversely with respects to intelligence (zyx) were men and may 
indicate the extent of male fear of intelligent women. The seven who chose inversely 
with respect to wealth (yxz) must not be considered to have a wanton disregard for 
money. They may well have preferred y over x because of a wide disparity in looks, x 
over z because of a wide disparity in intelligence, and y over z because of a 
combination of looks and intelligence. When required to rank all three alternatives, 
those with intransitive patterns scattered, most choosing yzx (9) and yxz (4). Those 
with transitive orderings for binary choices for the most part made the obvious 
orderings. 

In another experiment where pilots were asked to choose pairs from the set 
flames, red hot metal, falling, the most common choices were flames preferred to red 
hot metal; red hot metal preferred to falling; and falling preferred to flames. 

The first two choices could probably be explained by arguing that the pilot is 
conditioned to recoil from hot objects; more strongly from hot objects than flames and 
that he is accustomed to supporting himself solidly and therefore the reaction against 
falling. However, this does not explain the third choice which still does not seem 
unreasonable. 

Such experiments do not prove that human choices are intransitive but can 
suggest ways of designing experiments which show circularities or show only 
transitivity. Experiments in which components are ranked in conflicting ways can be 
expected to give rise to circularities. The question then is not “Are preferences 
transitive?” but “Under what conditions does transitivity fail?” Some people avoid 
this issue by asserting transitivity as part of the definition of rational behavior.  

Kenneth Arrow’s impossibility theorem give a negative answer to the 
possibility of finding a social welfare function designed to be useful in guiding the 
planning authority for a society, that would also satisfy individual and social choices. 
It is difficult to imagine that even a single individual has a utility function that also 
satisfies his various choices under all the circumstances he is likely to face at any 
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given moment. In Arrow’s work, transitivity of preferences is taken as a deterministic 
(yes, no) basis for consistency and its violation is considered a logical disaster. 

People are constantly making tradeoffs which violate transitivity but are on 
the whole a compromise that is acceptable because one also takes into consideration 
the relative importance of the criteria themselves. Clearly there are times when the 
individual cannot make a clear decision because the tradeoffs among several activities 
come out to be the same. There is no reason why not acting is any less desirable than 
acting if the criteria are faithfully identified and evaluated. 

Although the author is not particularly sold on the absolute need for social 
welfare functions, he believes that the basic ideas used to prove the social 
impossibility theorem need to be re-examined. There cannot be an impossibility 
theorem for a social utility function any more than there can be for an individual 
utility function. The individual makes himself happy or unhappy by how well he 
derives his priorities and makes his compromises. He can and often does have internal 
conflicts with whatever choices he makes even if he is perfectly rational in expressing 
the intensity of his preferences. 
 
 
3-3 SCALE COMPARISON 
 
The development of the previous section is independent of the comparison scale 
which we employ, as long as it is a ratio scale. (We shall briefly consider difference 
scales in Part II.) The question is justified, however; why do we choose the values 1-
9? In this section we shall attempt to satisfy the reader that this scale is, indeed, 
preferable to all others. 

Let us begin by describing our scale in more detail, as in Table 3-1. 
 
The names of Ernest Heinrich Weber (1795-1878), Gustav Theodor Fechner 

(1801-87), and Stanley Smith Stevens (1906-73) stand out as one considers the 
subject of stimuli and responses. 

In 1846 Weber formulated his law regarding a stimulus of measurable 
magnitude s. (Weber found, for example, that people while holding in their hand 
different weights, could distinguish between a weight of 20 g and a weight of 21 g, 
but not if the second weight is only 20.5 g. On the other hand, while they could not 
distinguish between 40 g and 41 g, they could between the former weight and 42 g, 
and so on at higher levels.) We need to increase s by a minimum amount  s to reach 
a point where our senses can just discriminate between s and ss. s is called the 
just noticeable difference (jnd). The ratio r = s/s does not depend on s. His law states 
that change in sensation is noticed when the stimulus is increased by a constant 
percentage of the stimulus itself. This law holds in ranges where s is small when 
compared with s, and hence in practice it fails to hold when s is either too small or too 
large. Aggregating or decomposing stimuli as needed into clusters or hierarchy levels 
is an effective way for extending the uses of this law. 

In 1860 Fechner considered a sequence of just noticeable increasing stimuli. 
He denotes the first one by s0. The next just noticeable stimulus (see Batschelet, 1973) 
by 

)1(00
0

0
0001 rss

s

s
ssss 


  

having used Weber’s law. 
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Table 3-1 
Intensity of 
importance 

 
Definition 

 
Explanation 

1 
 
 
3 
 
 
5 
 
 
7 
 
 
 
9 
 
 
 
2, 4, 6, 8 
 
 
 
Reciprocals 

of above 
nonzero 

 
 
 
 
 
Rationals 

Equal importance 
 
 
Weak importance of one 

over another 
 
Essential or strong 

importance 
 
Very strong or 

demonstrated 
importance 

 
Absolute importance 
 
 
 
Intermediate values 

between adjacent scale 
values 

 
If activity i has one of the 

above nonzero numbers 
assigned to it when 
compared with activity 
j, then j has the 
reciprocal value when 
compared with i 

 
Ratios arising from the 

scale 

Two activities contribute equally to the 
objective 

 
Experience and judgment slightly favor 

one activity over another 
 
Experience and judgment strongly favor 

one activity over another 
 
An activity is favored very strongly over 

another; its dominance demonstrated 
in practice 

 
The evidence favoring one activity over 

another is of the highest possible 
order of affirmation 

 
When compromise is needed 
 
 
 
A reasonable assumption 
 
 
 
 
 
 
 
If consistency were to be forced by 

obtaining n numerical values to span 
the matrix 

 
 
Similarly 

2
0

2
01112 )1()1( srsrssss   

In general 
 

n

nn sss  01



             (n = 0, 1, 2,…) 

 
Thus stimuli of noticeable differences follow sequentially in a geometric 

progression. Fechner felt that the corresponding sensations should follow each other 
in an arithmetic sequence occurring at the discrete points at which just noticeable 
differences occur. But the latter are obtained when we solve for n.  
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We have 
 

n = (log sn – log s0)/log  
 
and sensation is a linear function of the logarithm of the stimulus. Thus if M denotes 
the sensation and s the stimulus, the psychophysical law of Weber-Fechner is given 
by 

M = a log s + b,   a  0 
 

We assume that the stimuli arise in making pairwise comparisons of 
relatively comparable activities. We are interested in responses whose numerical 
values are in the form of ratios. Thus b = 0, from which we must have log s0 = 0 or s0 
= 1, which is possible by calibrating a unit stimulus. But this results from comparing 
one activity with itself. 

The next noticeable response is due to the stimulus 
 

s1 = s0 =  
 
This yields a response long /log  = 1. The next stimulus is 
 

s2 = s02 
 
which yields a response of 2. In this manner we obtain the sequence 1, 2, 3,…. For the 
purpose of consistency we place the activities in a cluster whose pairwise comparison 
stimuli give rise to responses whose numerical values are of the same order of 
magnitude. In practice, qualitative differences in response to stimuli are few. Roughly, 
there are five distinct ones as listed above with additional ones that are compromises 
between adjacent responses. The notion of compromise is particularly observable in 
the thinking judgmental process as opposed to the senses. This brings the total up to 
nine which is compatible with the order of magnitude assumption made earlier. 
 
REMARK Stevens’ power law extends the ideas of stimuli and response across wide 
ranges (as if it cuts across different hierarchic levels) estimating response as a power 
of the stimulus obtained from fitting curves to widely distributed data. It would appear 
that the power law may be an approximation to an outcome obtained by hierarchic 
decomposition. 
 
 
Why the Upper Limit 9 is Reasonable 
 
There are several reasons for setting an upper limit on the scale. 
 
(1) The qualitative distinctions are meaningful in practice and have an element of 

precision when the items being compared are of the same order of magnitude or 
close together with regard to the property used to make the comparison. 

(2) We note that our ability to make qualitative distinctions is well represented by five 
attributes: equal, weak, strong, very strong, and absolute. We can make 
compromises between adjacent attributes when greater precision is needed. The 
totality requires nine values and they may well be consecutive-the resulting scale 
would then be validated in practice. 
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Table 3-2  Scale conversion 
Scales Equal Betwn Weak Betwn Strong Betwn Demon. Betwn Absol. 
(1) 1-3 
(2) 1-5 
(3) 1-7 
(4) 1-9 
(5) 1-11 
(6) 1-13 
(7) 1-15 
(8) 1-17 
(9) 1-18 
(10) 1-26 
(11) 1-90 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

2 
2 
2 
2 
3 
3 
3 
3 
4 
5 
20 

2 
2 
2 
3 
4 
4 
5 
5 
6 
8 
30 

2 
3 
3 
4 
5 
6 
7 
7 
8 
11 
40 

2 
3 
4 
5 
7 
7 
8 
9 
10 
14 
50 

3 
4 
5 
6 
8 
9 
9 
11 
12 
17 
60 

3 
4 
6 
7 
9 
10 
11 
13 
14 
20 
70 

3 
5 
6 
8 
10 
12 
13 
15 
16 
23 
80 

3 
5 
7 
9 
11 
13 
15 
17 
18 
26 
90 

(12) 0.9 
(13) 0.7 
(14) 0.5 
(15) 0.3 
(16) 0.1 
(17) 1+0.x 
(18) 2+0.x 
(19) 3+0.x 
(20) 4+0.x 
(21)  x 
(22) x2 
(23) x3 
(24) x4 
(25) x5 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0.9 corresponding values in 1-9 scale above 
0.7 corresponding values in 1-9 scale above 
0.5 corresponding values in 1-9 scale above 
0.3 corresponding values in 1-9 scale above 
0.1 corresponding values in 1-9 scale above 
1+0.x where x is the corresponding value in 1-9 scale 
2+0.x where x is the corresponding value in 1-9 scale 
3+0.x where x is the corresponding value in 1-9 scale 
4+0.x where x is the corresponding value in 1-9 scale 
 x where x is the corresponding value in 1-9 scale 
x2 where x is the corresponding value in 1-9 scale 
x3 where x is the corresponding value in 1-9 scale 
x4 where x is the corresponding value in 1-9 scale 
x5 where x is the corresponding value in 1-9 scale 

    

(26) 2n/2 
(27) 9x/8 

20 = 1 
1 

20.5 = 1.414 
91/8 

21 = 2 
92/8 

215 = 2.828 
93/8 

22 = 4 
94/8 

22.5 = 5.657 
95/8 

23 = 8 
96/8 

23.5 = 11.31 
97/8 

24 = 16 
9 
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(3) By way of reinforcing (2), a practical method often used to evaluate items is the 
classification of stimuli into a trichotomy of regions: rejection, indifference, 
acceptance. For finer classification, each of these is subdivided into a trichotomy 
of low, medium, and high -in all indicating nine shades of meaningful distinctions. 
The author’s colleague Yoram Wind indicated that marketing studies conducted 
by our colleague Paul Green show that one does not need more than about 7 scale 
points to distinguish between stimuli. Thus we need not go above 9. 

(4) The psychological limit of 72 items in a simultaneous comparison suggests that 
if we take 7 + 2 items satisfying the description under (1), and if they are all 
slightly different from each other, we would need 9 points to distinguish these 
differences. (See G. A. Miller, 1956.) 

 
Let us note that using a scale of pairwise comparison from 0 to  may not be 

useful at all. It assumes that somehow human judgment is capable of comparing the 
relative dominance of any two objects, which is not the case. As we know well from 
experience, our ability to discriminate is highly limited in range and when there is 
considerable disparity between the objects or activities being compared, our guesses 
tend to be arbitrary and usually far from the actual. This suggests that our scales 
should have a finite range. In fact, the bounds should be rather close in a region which 
reflects our real capability at making ratio comparisons. Since unity is our standard of 
measurement, the upper bound should not be too far from unity, but sufficiently far to 
represent our range of discrimination. 

Now, we will consider a wide variety of scales with we apply to particular 
problems for which pairwise comparisons are known qualitatively; equal, weak, 
strong, very strong, and absolute, with compromise judgment between each 
successive pair of these values. The scales appear in Table 3-2. 

Next, we present the results of working out the illuminated chairs, wealth of 
nations, and air travel distance examples in these scales. First, the matrix of the 
example with qualitative values is presented (Tables 3-3  3-5). It is then followed 
with a listing if the eigenvector solutions corresponding to each of the scales (Table 3-
3a  3-5a). Adjacent to this is a column of corresponding eigenvalues. Two more 
columns, respectively, give the root mean square deviation and the median absolute 
deviation about the median. These are calculated for deviations of the corresponding 
row vector from the actual (known) solution vector given at the bottom. From these 
and many other illustrations that are less systematic for listing here, the scale 1-9 
distinguishes itself. It seems to point to a strong human affinity for making 
correspondence between shades of feeling and the numbers 1-9. There are those who 
even conjecture that this has to do with the capacity of the mind, and that it is this 
capacity that has something to do with the number of fingers, although is not known 
which is the causative factor. Under the assumption that the brain can simultaneously 
process 72 factors, large matrices may be hierarchically decomposed into clusters of 
this size to which the scale 1-9 may still be applied, indicating its possible viability for 
general situations which we have only validated for small clusters 
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Table 3-3  Illuminated chairs example 
 C1 C2 C3 C4 
C1 
C2 
C3 
C4 

E 
— 
— 
— 

B(W-S) 
E 
— 
— 

B(S-D) 
W 
E 
— 

D 
B(W-S) 
B(E-W) 
E 

E = equal, W = weak, S = strong, D = demonstrated, A = absolute, 
B(.  .) = between values indicated in parentheses. Reciprocal 
values are used in the transpose position (here left vacant) when 
qualities are translated to numerical scale. 
 
 
Table 3-3a 
Eigenvector for each scale max RMS MAD 
(1) 0.451 
(2) 0.531 
(3) 0.577 
(4) 0.617 
(5) 0.659 
(6) 0.689 
(7) 0.702 
(8) 0.721 
(9) 0.732 
(10) 0.779 
(11) 0.886 
(12) 0.596 
(13) 0.545 
(14) 0.470 
(15) 0.352 
(16) 0.141 
(17) 0.340 
(18) 0.445 
(19) 0.513 
(20) 0.561 
(21) 0.431 
(22) 0.860 
(23) 0.953 
(24) 0.984 
(25) 0.995 
(26) 0.604 
(27) 0.531 

0.261 
0.237 
0.222 
0.224 
0.213 
0.198 
0.199 
0.188 
0.185 
0.162 
0.098 
0.229 
0.238 
0.243 
0.236 
0.162 
0.260 
0.271 
0.266 
0.259 
0.260 
0.111 
0.043 
0.015 
0.005 
0.214 
0.233 
 

0.169 
0.141 
0.125 
0.097 
0.083 
0.074 
0.066 
0.060 
0.057 
0.042 
0.014 
0.105 
0.124 
0.151 
0.191 
0.230 
0.212 
0.171 
0.142 
0.122 
0.172 
0.021 
0.003 
0.001 
0.000 
0.107 
0.134 
 

0.119 
0.091 
0.077 
0.062 
0.044 
0.039 
0.034 
0.031 
0.026 
0.017 
0.003 
0.070 
0.094 
0.135 
0.221 
0.467 
0.187 
0.113 
0.078 
0.059 
0.137 
0.009 
0.001 
0.000 
0.000 
0.076 
0.102 

 4.071 
4.087 
4.034 
4.102 
4.230 
4.261 
4.353 
4.292 
4.451 
4.639 
6.545 
4.072 
4.023 
4.008 
4.094 
4.762 
4.004 
4.143 
4.332 
4.521 
4.025 
4.421 
4.992 
5.871 
7.142 
4.000 
4.000 

0.091 
0.045 
0.019 
0.008 
0.031 
0.047 
0.055 
0.066 
0.072 
0.099 
0.162 
0.009 
0.037 
0.081 
0.156 
0.316 
0.158 
0.094 
0.056 
0.031 
0.103 
0.147 
0.203 
0.223 
0.230 
0.008 
0.046 

0.008 
0.006 
0.006 
0.005 
0.011 
0.008 
0.013 
0.010 
0.010 
0.012 
0.031 
0.008 
0.009 
0.024 
0.071 
0.231 
0.042 
0.005 
0.016 
0.022 
0.017 
0.027 
0.057 
0.071 
0.076 
0.005 
0.077 

 0.608 0.219 0.111 0.062  = Actual vector solution. 
From inverse square law 
of optics 
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Table 3-4  Wealth example 
 

 U.S. U.S.S.R. China France U.K. Japan W.Germany
U.S. 
U.S.S.R. 
China 
France 
U.K. 
Japan 
W.Germany 

E 
— 
— 
— 
— 
— 
— 

B(W-S) 
E 
— 
— 
— 
— 
— 

A 
D 
E 
S 
S 
D 
S 

B(S-D) 
S 
— 
E 
E 
W 
W 

B(S-D) 
S 
— 
E 
E 
W 
W 

S 
W 
— 
— 
— 
E 
— 

S 
B(W-S) 
— 
— 
— 
B(E-W) 
E 

 
 
 
 
Table 3-4a 
 
Eigenvector for each scale max RMS MAD 
(1) 0.273 
(2) 0.348 
(3) 0.388 
(4) 0.427 
(5) 0.473 
(6) 0.496 
(7) 0.512 
(8) 0.531 
(9) 0.544 
(10) 0.597 
(11) 0.741 
(12) 0.408 
(13) 0.363 
(14) 0.302 
(15) 0.214 
(16) 0.078 
(17) 0.205 
(18) 0.283 
(19) 0.338 
(20) 0.379 
(21) 0.271 
(22) 0.700 
(23) 0.856 
(24) 0.932 
(25) 0.968 
(26) 0.470 
(27) 0.348 

0.201 
0.212 
0.220 
0.230 
0.234 
0.230 
0.235 
0.231 
0.232 
0.224 
0.181 
0.228 
0.220 
0.204 
0.169 
0.085 
0.174 
0.211 
0.230 
0.240 
0.201 
0.191 
0.114 
0.061 
0.030 
0.200 
0.227 

0.059 
0.039 
0.027 
0.021 
0.015 
0.013 
0.011 
0.010 
0.008 
0.005 
0.001 
0.024 
0.032 
0.047 
0.081 
0.197 
0.091 
0.055 
0.038 
0.028 
0.059 
0.002 
0.000 
0.000 
0.000 
0.019 
0.032 

0.088 
0.076 
0.067 
0.052 
0.040 
0.037 
0.033 
0.030 
0.026 
0.019 
0.004 
0.058 
0.072 
0.093 
0.130 
0.196 
0.120 
0.084 
0.063 
0.050 
0.096 
0.011 
0.002 
0.000 
0.000 
0.053 
0.075 
 

0.088 
0.076 
0.067 
0.052 
0.040 
0.037 
0.033 
0.030 
0.026 
0.019 
0.004 
0.058 
0.072 
0.093 
0.130 
0.196 
0.120 
0.084 
0.063 
0.050 
0.096 
0.011 
0.002 
0.000 
0.000 
0.053 
0.075 
 

0.165 
0.142 
0.132 
0.123 
0.116 
0.111 
0.104 
0.099 
0.099 
0.085 
0.048 
0.126 
0.131 
0.136 
0.135 
0.100 
0.150 
0.158 
0.157 
0.153 
0.148 
0.053 
0.017 
0.005 
0.001 
0.115 
0.134 

0.127 
0.108 
0.098 
0.094 
0.081 
0.076 
0.073 
0.069 
0.064 
0.052 
0.020 
0.099 
0.110 
0.125 
0.142 
0.149 
0.139 
0.125 
0.111 
0.100 
0.129 
0.033 
0.009 
0.002 
0.001 
0.091 
0.110 

 7.191 
7.285 
7.305 
7.608 
8.103 
8.097 
8.453 
8.436 
8.853 
9.616 
16.152 
7.485 
7.255 
7.079 
7.085 
8.275 
7.028 
7.398 
7.875 
8.359 
7.147 
9.729 
14.286 
23.125 
39.824 
7.147 
7.110 

0.062 
0.031 
0.017 
0.014 
0.029 
0.037 
0.043 
0.050 
0.056 
0.077 
0.134 
0.012 
0.024 
0.049 
0.090 
0.167 
0.092 
0.057 
0.036 
0.025 
0.062 
0.118 
0.182 
0.215 
0.231 
0.001 
0.029 

0.018 
0.014 
0.014 
0.011 
0.019 
0.016 
0.018 
0.017 
0.016 
0.014 
0.009 
0.007 
0.014 
0.014 
0.023 
0.083 
0.003 
0.019 
0.010 
0.014 
0.014 
0.010 
0.020 
0.026 
0.026 
0.026 
0.065 

 0.413 0.225 0.043 0.069 0.055 0.104 0.091  = Actual vector solution 
From GNP’s 1972 
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Table 3-5  Distance example 
 

 Cairo Tokyo Chicago 
San 
Francisco London Montreal 

Cairo 
Tokyo 
Chicago 
San Francisco 
London 
Montreal 

E 
W 
— 
— 
— 
— 

— 
E 
— 
— 
— 
— 

B(D-A) 
A 
E 
B(S-D) 
S 
— 

W 
W 
— 
E 
W 
— 

W 
W 
— 
— 
E 
— 

D 
A 
B(E-W) 
B(S-D) 
B(S-D) 
E 

 
 
 
 
Table 3-5a 
Eigenvector for each scale max RMS MAD 
(1) 0.234 
(2) 0.247 
(3) 0.253 
(4) 0.262 
(5) 0.265 
(6) 0.267 
(7) 0.265 
(8) 0.266 
(9) 0.264 
(10) 0.259 
(11) 0.210 
(12) 0.259 
(13) 0.251 
(14) 0.236 
(15) 0.202 
(16) 0.113 
(17) 0.203 
(18) 0.233 
(19) 0.247 
(20) 0.253 
(21) 0.229 
(22) 0.254 
(23) 0.198 
(24) 0.138 
(25) 0.089 
(26) 0.257 
(27) 0.248 

0.296 
0.320 
0.334 
0.397 
0.437 
0.443 
0.483 
0.482 
0.506 
0.550 
0.707 
0.380 
0.340 
0.286 
0.210 
0.084 
0.227 
0.321 
0.371 
0.414 
0.282 
0.591 
0.736 
0.837 
0.901 
0.385 
0.342 
 

0.083 
0.058 
0.045 
0.033 
0.027 
0.024 
0.020 
0.017 
0.016 
0.011 
0.002 
0.037 
0.047 
0.062 
0.091 
0.156 
0.117 
0.085 
0.066 
0.053 
0.083 
0.004 
0.000 
0.000 
0.000 
0.029 
0.044 

0.150 
0.150 
0.151 
0.116 
0.098 
0.099 
0.080 
0.082 
0.073 
0.058 
0.019 
0.124 
0.143 
0.168 
0.201 
0.227 
0.165 
0.131 
0.110 
0.094 
0.153 
0.048 
0.015 
0.004 
0.001 
0.138 
0.151 

0.175 
0.180 
0.183 
0.164 
0.154 
0.152 
0.138 
0.140 
0.131 
0.116 
0.061 
0.169 
0.178 
0.187 
0.190 
0.154 
0.178 
0.172 
0.163 
0.153 
0.181 
0.101 
0.050 
0.022 
0.009 
0.166 
0.175 

0.062 
0.045 
0.035 
0.027 
0.019 
0.016 
0.014 
0.012 
0.010 
0.007 
0.001 
0.030 
0.042 
0.062 
0.107 
0.266 
0.110 
0.065 
0.045 
0.033 
0.073 
0.003 
0.000 
0.000 
0.000 
0.025 
0.039 

 6.258 
6.224 
6.190 
6.454 
6.870 
6.848 
7.074 
7.106 
7.494 
8.109 
13.727 
6.354 
6.171 
6.042 
6.092 
7.261 
6.022 
6.349 
6.779 
7.214 
6.111 
7.993 
11.180 
17.124 
27.862 
6.156 
6.097 

0.043 
0.027 
0.019 
0.019 
0.036 
0.038 
0.057 
0.056 
0.067 
0.088 
0.159 
0.013 
0.018 
0.044 
0.086 
0.178 
0.082 
0.039 
0.024 
0.032 
0.049 
0.106 
0.172 
0.219 
0.250 
0.015 
0.019 

0.039 
0.015 
0.008 
0.010 
0.011 
0.011 
0.017 
0.015 
0.019 
0.024 
0.048 
0.010 
0.013 
0.019 
0.042 
0.144 
0.070 
0.044 
0.024 
0.023 
0.040 
0.030 
0.049 
0.061 
0.075 
0.009 
0.029 

 0.278 0.381 0.032 0.132 0.177 0.019  = Actual vector solution. 
From actual distances 
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REMARK The last scale (27) in Table 3-2, arises from the following consideration. 
In using the geometric mean of a judgment value estimated by several individuals (see 
last paragraph in this section), one may observe that the geometric mean of 2 and 8 is 
4, which is one interval closer to 2 than to 8 (unlike the geometric mean of 1/3 and 3, 
for example, which is 2 intervals from each). Thus one is led to devise a scale for 
reciprocal matrices that preserves a relationship of the kind x/y = y/z or y2 = xz, from 
which we would have log y – log x = log z – log y. This would obtain if our nine-value 
scale with 8 intervals is divided by starting with 1 followed by (for example) 91/8, then 
by 92/8 and so on also using the reciprocals of these values. The consistency may be 
thus improved but, as our examples show, not the validity. 
 

One way to test the goodness of the consistency obtained using different 
scales is the following. For each order matrix construct a sample of size 100, and fill 
in its entries, at random, from the scales 1-5, 1-7, 1-9, 1-15, 1-20, and 1-90. Thus, for 
example, for the scale 1-5, the main diagonal entries are, as always, unity and for each 
position above the diagonal we choose, at random, any of the integers 1-5 or their 
reciprocals (excepting the reciprocal of 1). 

The reciprocal of this entry is then given to its transpose. The same 
procedure is carried out for the other scales. We average (max - n)(n - 1) for the 100 
matrices corresponding to each value of n and for each scale. We also give the 
variances. 

We obtain Table 3-6, useful for comparing the significance of the calculated 
deviation from consistency for a particular problem, with the average value obtained 
for the scale being used. In our case the relevant values are for the scale 1-9. In this 
comparison we can require the ratio to be very small, e.g., of the order of 0.1. (We 
have estimated the frequency distribution of max based on yet another sample of size 
500. For n = 2 it is a constant, max = 2; for n = 3 the cumulative distribution is the 

Weibull distribution  cbe /max1   where b = 4.076 and c = 1.937. For n  4 we have a 
truncated normal distribution with means and variances of the sample as follows: n = 
4, (6.650, 3.370); n = 5, (9.418, 4.424); n = 6, (12.313, 4.413); n = 7, (15.000, 4.123); 
n = 8, (17.952, 3.627); n = 9, (20.565, 3.327).) In practice, we use the values given in 
Chapter 1 for random consistency comparisons of the 1-9 scale. 

We now make another interesting observation using this result. It is generally 

known that if  is any of the eigenvalues of a matrix, then 



ij

ijii aa  for some i, 

i = 1,…., n. 
Since for a reciprocal positive matrix max  n and aii = 1, we may simply 

write. 
 





n

j
ij

i
a

1
max max  

 
Now the maximum value for any aij is 9 when we use the scale 1-9. Thus max 

is at most equal to 9(n – 1). We also note that (max - n)(n – 1)  8 and it is therefore 
bounded from above. In fact, one can show that  = (max - n)(n – 1) satisfies 0  /8 
 1 which is close to unity when the consistency is high, a result confirmed by our 
statistical approach. 
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Table 3-6  Measure of inconsistency  
Order of 
matrix Scale 1-5 1-7 1-9 1-15 1-20 1-90 
3×3 
 
 
4×4 
 
 
5×5 
 
 
6×6 
 
 
7×7 
 
 
8×8 
 
 
9×9 
 
 
10×10 
 
 
11×11 
 
 
12×12 
 
 
13×13 
 
 
14×14 
 
 
15×15 

Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 
 
Mean 
Variance 

0.190 
0.024 545 
 
0.520 
0.088 061 
 
0.454 
0.026 549 
 
0.612 
0.016 420 
 
0.582 
0.036 440 
 
0.620 
0.016 970 
 
0.640 
0.014 949 
 
0.668 
0.010 279 
 
0.688 
0.010 360 
 
0.704 
0.007 257 
 
0.712 
0.009 552 
 
0.710 
0.003 535 
 
0.720 
0.004 444 

0.254 
0.193 822 
 
0.592 
0.109 430 
 
0.814 
0.087 479 
 
0.892 
0.075 895 
 
1.004 
0.077 964 
 
1.030 
0.036 667 
 
1.002 
0.031 915 
 
1.090 
0.019 697 
 
1.082 
0.022 703 
 
1.096 
0.029 075 
 
1.136 
0.022 933 
 
1.150 
0.017 273 
 
0.150 
0.010 808  

0.382 
0.266 743 
 
0.946 
0.433 014 
 
1.220 
0.278 788 
 
1.032 
0.180 380 
 
1.468 
0.120 986 
 
1.402 
0.073 935 
 
1.350 
0.047 980 
 
1.464 
0.028 590 
 
1.576 
0.046 691 
 
1.476 
0.317 410 
 
1.564 
0.030 610 
 
1.568 
0.021 996 
 
1.586 
0.021 216 

0.194 
0.026 226 
 
0.820 
0.726 465 
 
2.018 
1.024 723 
 
2.594 
0.530 469 
 
2.428 
0.473 147 
 
2.578 
0.227 794 
 
2.714 
0.180 408 
 
2.822 
0.138 905 
 
2.830 
0.100 505 
 
2.785 
0.097 923 
 
2.852 
0.070 400 
 
2.896 
0.054 125 
 
2.942 
0.050 339 

0.120 
0.006 869 
 
0.934 
0.385 499 
 
2.352 
2.157 268 
 
3.484 
0.837 721 
 
3.566 
0.867 923 
 
3.654 
0.448 368 
 
3.816 
0.338 731 
 
3.970 
0.254 848 
 
3.822 
0.209 208 
 
3.948 
0.187 572 
 
4.038 
0.104 904 
 
4.034 
0.102 671 
 
4.096 
0.113 923 

0.720 
0.213 737 
 
1.490 
0.858 485 
 
11.690 
84.438 283 
 
16.670 
29.536 466 
 
18.230 
19.694 040 
 
17.280 
8.435 959 
 
18.060 
8.551 918 
 
19.670 
5.172 827 
 
19.670 
4.425 352 
 
19.730 
2.724 343 
 
19.790 
2.955 453 
 
19.990 
2.818 083 
 
19.980 
2.534 949 

 
This table is reproduced by the courtesy of Dr. R. Uppuluri of the Oak Ridge National 

Laboratory 
 
What we did for each scale (instead of using difference methods), was to take the 
average of the last three values; i.e., for n = 13, 14, 15 in Table 3-6 for each scale, and 
use it as an approximation to the limiting value. If we denote this value by Ls for scale 
s, we then calculate a new table using C  Ls - /Ls for each n and measure 
consistency expressed as an index between zero and unity. This leads to Table 3-7 and 
its associated graph of (Fig. 3-1). 

Now this is the consistency measured for randomly filled matrices. In 
general, informed judgment leads to better consistency. However, all the plots show 
that when the number of objects being compared exceeds 5, the value of C is less than 
10 per cent and is about the same for all n. 
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This seems to say that among the large number of random inconsistencies 
which exist in relating n objects we must find the consistent framework which we 
seek. The changes for finding it are smaller the larger the number of objects we have 
to connect by a logical framework. Our chances would be better the smaller n is but 
again n must be large enough in order not to have automatic consistency, e.g., for n = 
2. For larger values of n we need to use some redundancy of information to improve 
our validity, i.e., how well our results capture the real world. 

Let us close this section with two remarks. First, if it is necessary to make 
very fine distinctions in pairwise comparisons, one can subdivide the 19 scale by 
treating each pair of values, 3 and 4, say, by adding to the lower one the values 0.25 
for weak, 0.5 for moderate, and 0.75 for strong. In our experience, however, this has 
rarely been found to be of great help except when comparing only two objects. There 
we have used a scale from 1 to 1.5 to obtain finer shades of distinction. 

Second, while taking judgments from several people it is preferable, as noted 
in Chap. 1, to use the geometric rather than the arithmetic mean. This is particularly 
clear where one person assigns the value a and the other the value 1/a. The mean 
should be 1 and not (a + 1/a)/2. Thus in general, for n judgments, one multiplies their 
numerical values and extracts the nth root. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-1  Consistency normalized using asymptotic value 
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Table 3-7  
s

s

L

L 
 

Scale 1-5 1-7 1-9 1-15 1-20 1-90 
Order 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

 
0.733 9 
0.271 7 
0.364 1 
0.142 9 
0.184 9 
0.131 7 
0.103 6 
0.064 4 
0.036 4 
0.014 0 
0.002 8 
0.005 6 
0.008 4 

 
0.778 2 
0.483 1 
0.289 3 
0.221 2 
0.123 4 
0.100 7 
0.125 1 
0.048 3 
0.055 3 
0.043 1 
0.008 1 
0.004 1 
0.004 1

 
0.757 1 
0.398 5 
0.224 2 
0.343 8 
0.066 6 
0.108 5 
0.141 6 
0.069 1 
0.002 1 

0.061 5 
0.005 5 
0.003 0 
0.008 5

 
0.933 0 
0.716 9 
0.303 3 
0.104 5 
0.161 8 
0.110 0 
0.063 1 
0.025 8 
0.023 0 
0.038 9 
0.015 4 
0.000 2 
0.015 7

 
0.970 4 
0.769 7  
0.402 1 
0.141 0 
0.120 8 
0.099 1 
0.059 2 
0.021 2 
0.057 7 
0.026 6 
0.004 4 
0.005 4 
0.009 9 

0.963 9
0.925 2
0.413 2
0.163 2
0.084 8
0.132 5
0.093 4
0.012 6
0.012 6
0.009 5
0.006 5
0.003 5
0.003 0

 
 
3-4 COMPARING THE EIGENVECTOR METHOD WITH  

OTHER METHODS 
 
Several experiments were conducted to compare the accuracy of the eigenvector 
method with other methods is estimating a real situation. In two experiments 
conducted at Cornell University in the summer of 1976 people were asked to estimate 
the values directly and told to find the smallest element and give it value one and give 
the others as multiplies of this value. Other people were told to use the eigenvalue 
method with scale 19 and still others could use any values they wished but the 
eigenvalues problem was solved with these numbers. 

In a separate experiment people solved the eigenvalue problem scale 19 and 
then the same people after deriving experience from the pairwise comparisons did the 
direct experiments. It is likely that an expert can estimate the situation directly and 
may not do better on the eigenvalue scale 19 approach. In the social area where 
usually no ratio answers are available, the eigenvalue approach shows the judgment of 
an expert in the pairwise comparison, with is useful to have. In addition, it provides a 
measure of consistency which is not available in direct methods. The results were 
compared with the actual value and both RMS and MAD were calculated. The 
average value for both of these were then calculated. 

From these limited experiments one learns that if people do not know what 
they are talking about, there is no scale that would make them look better. However, if 
people know something and they want a measure of it, then there is no better way of 
getting these judgments down than through a systematic procedure which facilitates 
comparisons, and is in harmony with intuition and human feelings, and is free of 
artificiality. If a person already knows the answer, he then has no need for any scale, 
and exactly because he knows the answer, using his knowledge, one cannot find out 
the advantages of a method use to help non-expert people who need the stimulation of 
an organized approach to get their ideas in proper perspective. However, his expertise 
may be used to see if a scaling method actually reproduces known results. Our 
experiments did not only compare between experts and non experts, but also between 
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people who were partly informed and partly diligent to apply the method well, versus 
people who were partly informed but less careful in providing information. We can 
say that for people who are knowledgeable and for all people using their senses for 
physical comparisons, the eigenvalue approach to ratio scaling compares very 
favorably with other methods we have examined. It also produces better results for 
people who are partly informed and attempt to scale their judgment built up logically 
and simply from relations between pairs. For example they may begin by arranging 
things on an ordinal scale. Then they can select for comparison the items of which 
they are sure. Among these they can start with the most dominant item and follow it 
by the least dominant one to get bounds on the range of their feelings. So far at least a 
thousand people have participated in problem solving involving applications for 
governments and for industries. Some have used it for their personal problems. Few 
applications have been in the nature of exercises. 
 
 
3-5 REVISING JUDGMENTS 
 
Assume that the consistency index is sufficiently large to warrant judgmental revision. 
Where should it be made? Two ways immediately present themselves. The first it is 
form the matrix of priority ratios wi/wj and consider the matrix of absolute differences 
[aij – (wi/wj)] and attempt to revise the judgment on the element(s) or row  sums with 
the largest such differences. 

Alternatively, a more appealing idea is to form the root mean square 
deviation using the rows of (aij) and (wi/wj) and revise the judgments for the row with 
the largest value. The justification for this is that generally one tends to be uncertain 
about how an activity relates to all others rather than to a single one. The procedure 
can then be repeated to not improvement. What would be desirable is to have an 
iterative procedure which converges so that aij become wi/wj. The procedure consists 
of replacing all aij in the row in question by the corresponding wi/wj and recalculating 
the priority vector. Repetition of this process has been noted to produce convergence 
to the consistent case. We have worked out some examples using the row with max 





n

j
jiij

i
wwa

1

/max . (One need not be concerned about the fact wi/wj may be greater 

than 9.) 
The vocational training matrix which we encountered under the school 

selection example is given by 
 


















157/1

5/119/1

791

A  

 
and its vector of priorities is (w1, w2, w3) = (0.77, 0.06, 0.17); max = 3.21 with 
consistency index 0.1. We form the matrix of the ratios of priorities corresponding to 
wi/wj. The largest absolute difference is between a12 and wi/wj. Thus we replace a12 by 
wi/wj = 14.15 and recompute the priorities obtaining the vector (0.81, 0.04, 0.15) with  
max = 3.09 and consistency 0.02. We note the continued improvement in consistency. 
Again, if we replace the first row which gives the largest differences from wi/wj we 
obtain the vector (0.76, 0.04, 0.20) and max  = 3.023 with consistency 0.01. Replacing 
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the first row by the corresponding ratios, we have the vector (0.75, 0.04, 0.21) with 
max = 3.003 and consistency index 0.00 indicating successive improvement in 
consistency. As we shall see, one can also follow a lengthy procedure of using least 
squares approximation by a matrix of unit rank and then obtain its eigenvector. 

Another and perhaps more relevant way to revise judgments relates to 
selecting the largest of the ratios of aij to wi/wj and elaborations on that idea (see 
Chap. 7 for reasons). 

We caution against excessive use of this process of forcing the values of 
judgments to improve consistency. It distorts the answer. One would rather have 
naturally improved judgments arising from experience. 
 
 
3-6 ALL THE EIGENVALUE AND EIGENVECTORS: 

THE WEALTH EXAMPLES OF CHAPTER 2 
 
In Table 3-8 we give for all eigenvalues, both left eigenvectors (these satisfy vA = v) 
and right eigenvectors (these satisfy the familiar from Aw = w). For  = max a left 
eigenvector is dual to (i.e., the inverse of) the right eigenvector as a way of measuring 
the opposite of dominance with respect to a property we have been using so far in 
making comparisons. When we have consistency, these two principal left and right 
eigenvectors are exact reciprocals. This relationship also holds between principal left 
and right eigenvectors of all 2 by 2 and 3 by 3 reciprocal matrices. 
 
 
3-7 CONSENSUS AND THE DELPHI METHOD 
 
An important area related to taking the judgment of several people is how to obtain 
consensus from their judgments. The process of obtaining consensus can be used to 
persuade people that their interests are taken into consideration. Thus, for our 
purposes, consensus means improving confidence in the priority values by using 
several judges to bring the results in line with majority preferences. 

There has been some interesting work done on the problem of reaching 
consensus. Kemeny and Snell (1962) whose work has been generalized by Bogart 
(1973) have used the automatic approach to develop a method for arriving at a 
consensus in the case of weak ordering (preferred = 1, tied = 0, not preferred = -1) of 
a set of objects by several people. They proved that there is a unique distance function 
satisfying all the axioms. It is used to derive a consensus matrix by finding for each 
entry the value which minimizes the sum of the squares of the distances to each 
corresponding entry of the judgment matrices constructed by several people. The 
result may not be an integer; some practitioners round the numbers off to the nearest 
integer. The value obtained in this way is called the mean. The distance  function is 
also used to derive the matrix of median values. Each entry of this matrix minimizes 
the sum of the distances to the corresponding entries of the judgment matrices. 
Although each of the mean and median appears to be reasonable way to obtain 
consensus, the mean provides a way to “tie the objects” being compared whereas the 
median offers a way to “pick among the experts” providing the judgment. In our case 
the geometric mean is used. 
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Table 3-8  The wealth example 
Eigenvalues     
7.7451 0.1157+2.2985i 0.11572.2985i 0.4464+0.5161i 0.44640.5161i 0.0419+0
Right eigenvectors     
0.422 
0.227 
0.020 
0.051 
0.047 
0.143 
0.090 

0.7750.525i 
0.421+0.178i 
0.0050.045i 
0.0690.011i 
0.0930.011i 
0.014+0.292i 
0.042+0.123i 

0.775+0.525i 
0.4210.178i 
0.005+0.045i 
0.069+0.011i 
0.093+0.111i 
0.0140.292i 
0.0420.123i 

1.382+0.387i 
0.266+0.757i 
0.0700.032i 
0.058+0.151i 
0.068+0.070i 
0.1980.217i 
0.0260.342i 

1.382+0.387i 
0.2660.757i 
0.070+0.032i 
0.0580.151i 
0.0680.070i 
0.198+0.217i 
0.026+0.342i 

1.4940.01
0.8210.3
0.095+0.0
0.5970.23
0.123+0.2
0.869+1.61
0.9201.2

Left eigenvectors     
0.022 
0.039 
0.450 
0.155 
0.186 
0.061 
0.087 

0.0010.047i 
0.0700.036i 
0.8470.509i 
0.145+0.128i 
0.235+0.304i 
0.099+0.056i 
0.057+0.104i 

0.001+0.047i 
0.070+0.036i 
0.847+0.509i 
0.1450.128i 
0.2350.304i 
0.0990.056i 
0.0570.104i 

0.0600.036i 
0.026+0.125i 
1.3640.222i 
0.160+0.174i 
0.554+0.206i 
0.0760.096i 
0.0120.152i 

0.060+0.036i 
0.0260.125i 
1.364+0.222i 
0.1600.174i 
0.5540.206i 
0.076+0.096i 
0.012+0.152i 

0.1160.1
0.092+0.9
0.4680.68
8.1086.54
8.664+6.3
1.1151.8
2.412+1.89

  
Bogart has generalized the approach to a distance function for the collection 

of all partial orderings of a set, extending the previous work to semi-orders and 
interval orders and further to intransitive orders. After proving the uniqueness of the 
distance function satisfying a reasonable set of axioms he shows, among other things, 
the following: 

 
(1) The mean of a collection of orderings in the set of all antisymmetric orderings 

satisfies the decision rule (called the powerful majority rule) that a is preferred to 
b if the number preferring a to b minus those preferring b to a is more than half 
the number of individuals providing judgment. The rule leads to a unique mean of 
the collection. 

(2) The majority rule ordering (in which a is preferred to b if it also holds for the 
majority of the people providing the judgment), for a set of antisymmetric 
orderings is a median for the set. This median is unique unless there is a tie in the 
number preferring a to b and those preferring b to a. 

 
In the present work consensus is derived along different lines. The amount of 

information available to provide judgments is crucial. In seeking consensus, it is 
preferable that the judges interact. A well-informed person can effect substantial 
change in the beliefs of another person who has less information. The debate should 
help bring judgments closer together. Such a debate would assist in providing 
information to apply the method of priority assignment to the judges themselves. 

Thus, our approach to consensus is to apply the method to derive priorities 
for the several individuals involved according to the soundness of their judgment. The 
factors affecting judgment may be: relative intelligence (however measured), years of 
experience, past record, depth of knowledge, experience in related fields, personal 
involvement in the issue at stake, and so on. If we have high confidence in the 
judgment of these people, the priority derived is used to weight the final priority result 



 63    

derived from the judgment of each individual and an overall weighted priority is then 
obtained in the usual way. On the other hand, if we have low confidence in the 
judgments provided by the judges, we can use the geometric mean of their individual 
judgments as they appear in each of the comparison matrices. 

In mixed situations, a combination of the two procedures may be used, but 
we have not investigated the details of this problem. Another area for research is to 
compare the results obtained this way with those obtained using the work of other 
people. 

How to represent group judgment in a satisfactory way when people’s 
experiences and judgments differ, and whose opinions should be taken more seriously 
and why, is a major problem in social study and conflict analysis. 

It seems possible that an idea developed and evaluated by one group should 
be handed over to another group for further debate and change in judgment. But the 
end result may still be wide variability in the solution. Thus bargaining and 
negotiation must be an intrinsic procedure for group agreement. One cannot arbitrate 
the priorities by using the judgments of a favored group over others. In other words, 
discovering a convenient and workable mathematical framework for a problem does 
not automatically solve its social intricacies. However, it can simplify and make clear 
where the most fruitful bargaining and compromising has to be done. If social 
problem requires arbitration, the mediator must carefully evaluate the needs and 
influences of the groups before indicating where the compromises should be made. 
Perhaps the most promising contribution of hierarchical analysis is using is to 
structure the problem from the start jointly by the conflicting groups rather than by a 
third party, and then do the bargaining through the numerical entries. 

At this point, let us briefly consider another method which depends heavily 
on the concept of consensus, the Delphi method. 

The Delphi method is a well-known process by which problems can be 
analyzed, values estimated, and futures of interest to management forecasted. A rough 
description of the procedure is given below as a part of the comparison with 
hierarchical analysis. 

The basic differences between Delphi and the hierarchical methods are the 
following. 

 
(1) Anonymous versus operating group discussion In Delphi each member of the 

group responds anonymously to a previously prepared questionnaire to avoid 
disproportionate influence of strong personalities. In hierarchies the criteria and 
judgments are established mostly by an open group process. 

(2) Adjustment is a series of rounds versus dynamic discussion In Delphi there must 
be a review of the questionnaire results, and adjustments are requested again on an 
anonymous basis. In hierarchies dynamic discussion is used while constructing the 
hierarchy and providing judgments by mutual agreement and revision of views. 
People attempt to present their arguments openly. 

(3) Questionnaire versus hierarchy structure as a basis for judgments In Delphi, the 
design of the questionnaire implies the choice of the variables involved by the 
person who creates the questionnaire. In hierarchies the group decides on the 
variables which have any effect on the judgment to be made. Initially all variables 
suggested are accepted. Later in the procedure some might be ignored due to low 
priority assigned to them by the group. 
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(4) Statistical and quantitative analysis versus qualitative analysis The Delphi 

method requires numerical responses which are to be analyzed statistically as a 
basis for the next round. In hierarchies the judgments involve absolute numbers 
from 1 to 9 reflecting qualitative judgment on pairwise comparison and used as a 
part of a rigorous derivation of an estimate for an underlying ratio scale. 
Consistency is an important criterion as a necessary condition to valid scaling of 
reality. 

 
In both cases the process of analyzing the problem improves the quality of 

judgments, but the hierarchy method breaks down the judgment into its elementary 
components, and therefore better fits the human cognitive style. Another important 
issue here is that the group determines the important set of variables, and therefore has 
better confidence in the relevance of their judgments. This procedure is helpful in 
diminishing disagreements in an open dynamic fashion. As a short and simple 
procedure with highly effective results, its many practitioners have recommended its 
use in planning and in making forecasts as a reflection of the beliefs of the 
participants. 
 
 
3-8 SOME EXTENSIONS 
 
Frequent use of pairwise comparisons leads one to wonder about comparisons of 
triples, quadruples, etc. An example of a comparison of triples is the idea of 
betweenness. For example B between A and C requires all three A, B, and C to be 
present. If we are interested in developing a scale for a set of elements from triple or 
higher order comparisons we need a method of representing the comparisons to derive 
the scale. A simple minded way of representing such an n-tuple relation is by means 
of a vector whose numerical entries presumably indicate the mutual standing of n 
elements in the comparison. 

Now it is known that with vectors of pairs we can associate numbers as 
follows: 

It is sufficient to show that there is a (1-1) correspondence between the set E1 
of real numbers x such that 0 < y  1 and the set E2 of points in the plane defined by 
E2 = {(x,y)  (0 < x  1) and (0 < y  1)}. Now each element x in E1 is representable in 
the form 0x1x2,…,xk,…. This array may be divided into “blocks” as we shall illustrate 
presently. Thus the number 0.740653001…has the successive blocks 7, then 4, then 
06, then 5, then 3, then 001, etc. Each block has a digit different from zero and it is its 
last digit. We have the ordered pair )0,0( 2

2
2
1

1
2

1
1  xxxx  with 

001,3,5,06,4,7 2
2

1
3

2
2

1
2

2
1

1
1  xxxxxx , etc. which gives (0.7063, 0.45001) 

in which the blocks are assigned alternately to the two coordinates of a point in E2. 
This reversible process gives a (1-1) correspondence between elements in the unit 
interval and points in the unit square with zero corresponding to (0, 0). 

It is clear that the process (though ambiguous) may be extended to a vector 
of 3 components, by taking the first entry along with the number in E1 associated with 
the vector of the next two entries, and then again associating a new number in E1 with 
the resulting pair and so on for vectors of n components. Thus we can conceptually 
associate numbers (though non-unique) with vectors. For a particular problem one 
needs a good way to make the selection. 
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One may also generalize the pairwise comparison eigenvalue approach to the 
use of complex numbers. The process would correspond to comparing objects 
according to two independent attributes simultaneously. The consistent case remains 
Aw = nw with n being the largest eigenvalue of A, and the consistency relation ajk = 
aik/aij also survives. Small perturbations in the coefficients may now produce a small 
complex perturbation in n, yielding a max that is a complex number, an of course the 
solution would in general be complex. Normalizing to unity by straight addition is no 
longer meaningful. It may be necessary to use the Euclidean norm of (a1, a2) = a1 + 
ia2 which is 2/12

2
2
1 )( aa  . The generalization may be carried to quaternions, i.e., 

numbers of the form 
a1 + ia2 + ja3 + ka4 

 
and to octaves or octonions involving eight of the imaginary arguments. It is known 
that one cannot go beyond these numbers since identities of the form 
 

2
8

2
1

2
8

2
1

2
8

2
1 ))(( ccbbaa    

 
are only possible for sums of 1, 2, 4, and 8 squares (Van Der Waerden). 
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CHAPTER 

FOUR 
 

HIERARCHIES AND PRIORITIES: 
A FORMAL APPROACH 

 
 
 
 
4-1 INTRODUCTION 
 
Because of its crucial relevance to applications, despite its partly abstract content, we 
have included this chapter in the early part of the book. The illustrative examples given 
earlier adequately demonstrate the idea of how to compose weights in a hierarchy. The 
non-technical reader can ignore the early more mathematical discussion of the chapter 
and read the remaining sections which give deeper insight into the important role that 
hierarchies play in human thought. 

We begin by giving a formal definition of a hierarchy and the priority structures. 
This is followed by a discussion of clustering and its efficiency, standardizing 
measurement, and the consistency of a hierarchy. Also, a graph theoretic interpretation of 
the concept of priority is presented. The reader, whose knowledge of matrix theory and 
graph theory is sketchy, may be well advised to first consult the two appendices on these 
subjects. 
 
 
4-2 HIERARCHIES AND PRIORITIES 
 
As the examples and graphical representations of hierarchies as given in Part One, 
suggest, we may consider a hierarchy a special type of ordered set, or a particular case of 
a graph. We have chosen the first interpretation as the basis of our formal definition, and 
the second as an illustration. No doubt, the roles could be reversed. 
 
 

Definition 4-1 An ordered set is any set S with a binary relation  which satisfies 
the reflexive, antisymmetric, and transitive laws: 

 
Reflexive: For all x, x  x. 
Antisymmetric: lf x  y and y  x, then x = y. 
Transitive: If x  y and y  z, then x  z. 

 
  For any relation x  y (read, y includes x) of this type, we may define x < y to 
mean that x  y and x  y. y is said to cover (dominate) x if x < y and if x < t < y is 
possible for no t. 
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Ordered sets with a finite number of elements can be conveniently represented 
by a directed graph. Each element of the system is represented by a vertex so that an arc 
is directed from a to b if b < a. 
 

Definition 4-2 A simply or totally ordered set (also called a chain) is an ordered 
set with the additional property that if x, y  S then either x  y or y  x. 
 
Definition 4-3 A subset E of an ordered set S is said to be bounded from above if 
there is an element s  S such that x  s for every x  E. The element s is called 
an upper bound of E. We say E has a supremum or least upper bound in S if E has 
upper bounds and if the set of upper bounds U has an element u1 such that u1  u 
for all u  U. The element u1 is unique and is called the supremum of E in S. The 
symbol sup is used to represent a supremum. (For finite sets largest elements and 
upper bounds are the same.) 

 
Similar definitions may be given for sets bounded from below, a lower bound 

and infimum. The symbol inf is used. 
There are many ways of defining a hierarchy. The one which suits our needs best 

here is the following: 
 

We use the notation x = {yx covers y} and x
+ = {yy covers x}, for any element 

x in an ordered set. 
 

Definition 4-4 Let H be a finite partially ordered set with largest element b. 
 
H is a hierarchy if it satisfies the conditions 
 
(1) There is a partition of H into sets Lk, k = 1,..., h where L1 = {b}. 
(2) x  Lk implies x  Lk+1 k = 1, …, h 1 
(3) x  Lk implies x+  L k+1 k = 2, …, h. 
 

For each x  H, there is a suitable weighting function (whose nature depends on 
the phenomenon being hierarchically structured): 
 

wx : x
  [0, 1] such that  




xy

x yw 1  

 
The sets Li are the levels of the hierarchy, and the function wx is the priority 

function of the element in one level with respect to the objective x. We observe that even 
if x  Lk+1 (for some level Lk), wx may be defined for all of Lk by setting it equal to zero 
for all elements in Lk+1 not in x. 

The weighting function, we feel, is a significant contribution towards application 
of the Analytic Hierarchy Process. 
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Definition 4-5 A hierarchy is complete if, for all x  Lk x
+ = Lk-1 for k = 2, …., h. 

 
We can state the central question: 

 
BASIC PROBLEM Given any element x  L, and subset S  L, ( < ), 

how do we define a function wx,s: S  [0, 1] which reflects the properties of the 
priority functions wy on the levels Lk, k = , …, -1. Specifically, what is the 
function wh,Lh : Lh  [0, 1]? 

In less technical terms, this can be paraphrased thus: 
 

Given a social (or economic) system with a major objective b, and the set 
Lh of basic activities, such that the system can be modeled as a hierarchy with 
largest element b and lowest level Lh. What are the priorities of the elements of Lh 
with respect to b? 

 
From the standpoint of optimization, to allocate a resource among the elements 

any interdependence must also be considered. Analytically, interdependence may take the 
form of input-output relations such as, for example, the interflow of products between 
industries. A high priority industry may depend on flow of material from a low priority 
industry. In an optimization framework, the priority of the elements enables one to define 
the objective function to be maximized, and other hierarchies supply information 
regarding constraints, e.g., input-output relations. 

We shall now present our method to solve the basic problem. Assume that Y = {Y1 
..., ymk} Lk and that X = {x1, ...., xmk+1}  Lk+1. (Observe that according to the remark 
following Definition 4-4, we may assume that Y = Lk, X = Lk+1.) Also assume that there is 
an element z  Lk-1, such that y  z. We then consider the priority functions 
 

wz : Y  [0, 1] and wj : X  [0, 1]    j = 1, ..., nk 
 
We construct the “priority function of the elements in X with respect to z,” denoted  
w,w: X  [0, 1], by 
 

w(xi) =     1
1

,...,1, 


 kzi

nk

j
yj ni      yjwxw  

 
It is obvious that this is no more than the process of weighting the influence of the 
element yj on the priority of xi by multiplying it with the importance of yi with  
respect to z. 

The algorithms involved will be simplified if one combines the wyj (xi) into a 
matrix B by setting bij = wyj(xi). If we further set Wi = w(xi) and Wj = wz(yj), then the 

above formula becomes 

1
1  

,...,1      ' 


  k

n

j
jiji niWbW  
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Thus, we may speak of the priority vector w and, indeed of the priority matrix B of the 
(k+ l)st level; this gives the final formulation 
 

W = BW' 
 
The foregoing composition of priorities has involved weighting and adding. This requires 
independence among the criteria in each level, otherwise one element may get some 
priority with respect to an attribute, and additional priority for the overlap of this attribute 
with another attribute giving rise to double counting. In simple terms, a set of attributes or 
criteria are said to be independent if it is possible to make tradeoffs between any pair 
without regard to the influence of the others. In other words criteria are independent if 
there is no interaction among them. There are formal definitions of independence and 
good elaborate methods for testing for independence using judgments of participants (see, 
for example, Keeney and Raiffa, 1976). Behind this informal discussion of independence 
there are rigorous and also time-consuming methods for verifying independence. In 
practice people prefer to depend on their intuitive interpretation of non-interaction than to 
perform a series of tests. In a test, with each attribute is associated a set of “levels” e.g., 
for learning, one has grade levels A, B, C, D, etc. One conducts preference in judgment 
among these for a certain individual. This preference may be ordinal or cardinal. If there 
are attributes other than learning one must fix each at some base level before doing this 
preference comparison of A, B, C, D. Then one varies the preference of the level of one 
other attribute and does the preference comparison among the different levels of learning 
A, B, C, D. One continues to do this by varying all the levels of the second attribute. If the 
preferences among A, B, C, D stay the same, then learning is said to be conditionally 
independent of the second attribute. It is conditional because the other attributes are fixed 
at a certain level. If there are several attributes the process is continued. For additivity, 
two activities must be independent and satisfy a cancellation condition. For three, each 
pair must be independent and other conditions must be satisfied, etc. We now repeat the 
basic idea in a simple set theoretic framework and present a principle.                 
 
 
Principle of Hierarchical Composition: Additivity of Weighting 
 
Given two finite sets S and T. Let S be a set of independent properties (for example of 
dependence see Chap. 7) and let T be a set of objects which have the properties as 
characteristics. Assume that a numerical weight, priority, or index of importance, wj > 0, j 

= 1, .... n, is associated with each sj  S, such that 



n

j
jw

1

 1. Let wij > 0, i = 1,..., m, with 





m

i
ijw

1

,1  be weights associated with ti  T, i = 1, …, m, relative to sj. Then the convex 

combination of wij, j = 1, …, n,  
 

mi        wwi
n

  j
jj ,...,1

1



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gives the numerical priority or relative importance of ti with respect to S. Note the 
principle generalizes to a chain of sets. An axiomatization of the principle of hierarchical 
composition would be useful. 
 
REMARK “Hierarchical measurement” is a weighting process of “linear” variables 
associated with each level with nonlinear coefficients that are products and sums of 
variables associated with higher levels. Note that linearity here simply means multiplying 
numbers directly without raising them to powers or forming functions of them. The actual 
value itself is a complex (nonlinear) measure of priority. 
 

The following is a first step towards validating the above principle as it shows 
that ordinal preferences are preserved under composition. 
 

Definition 4-6 Suppose that for each subgoal or activity ej in Lk there is an ordinal 
scale oj over the activities e ( = 1,..., nk+1) in Lk+1. Define a partial order over 
Lk+1 by : e  e if and only if for j = 1,..., nk, oj  oj.

 

It is easy to prove: 
 
Theorem 4-1 Let (w1j, … , wnk+1j) be the priority vector for Lk+1 with respect to ej, 
and suppose it preserves the order of the jo . Let W1, …, Wnk+1 be the 

(composite) priority vector for Lk+1. Then e  e implies W  W. 

Thus hierarchical composition preserves ordinal preference. 
The following is easy to prove. 
 
Theorem 4-2 Let H be a complete hierarchy with largest element b and h levels. 
Let Bk be the priority matrix of the kth level, k = 2, ... h. If W' is the priority vector 
of the pth level with respect to some element z in the (p-1)st level, then the 
priority vector W of the qth level (p < q) with respect to z is given by 
 

'
11 WBBBW pqq    

Thus, the priority vector of the lowest level with respect to the element b is given 
by 

'
21 WBBBW hh   

 
If L1 has a single element, as usual, W' is just a scalar; if more, a vector.  
The following observation holds for a complete hierarchy, but it is also useful in 

general. The priority of an element in a level is the sum of its priorities in each of the 
comparison subsets to which it belongs; sometimes each of these is weighted by the 
fraction of elements of the level which belong to that subset and by the priority of that 
subset. The resulting set of priorities of the elements in the level is then normalized by 
dividing by its sum. The priority of a subset in a level is equal to the priority of the 
dominating element in the next level. 

Note that composition of weights in a hierarchy yields multilinear expressions of 
the form 
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ii xxx 



,,
21

1

21  

where ij indicates the jth level of the hierarchy and the xj is the priority of an element in 
that level. There seems to be a good opportunity to investigate the relationship obtained 
by composition to covariant tensors and their algebraic properties. 
 

More concretely we have the covariant tensor 
 

iiwwww
h

h

h

hh i

NN

ii
ii

h
ii

h
i 











1

1
,,

1,,

21

1

11

12

1221





  

 
for the priority of the ith element in the hth level of the hierarchy. The composite vector 
Wh for the entire hth level is represented by the covariant hypertensor (a vector with 
tensor components). Similarly, the left eigenvector approach to a hierarchy gives rise to a 
contravariant hypertensor. 

The classical problem of relating space (geometry) and time to subjective 
thought (see Russell, 1945, p. 468) can perhaps be examined by showing that the 
functions of mathematical analysis (and hence also the laws of physics) are derivable as 
truncated series from the above tensors by composition in an appropriate hierarchy. The 
foregoing is reminiscent of the theorem in dimensional analysis that any physical variable 
is proportional to the product of powers of primary variables. 
 
 
4-3 DECOMPOSITION AND AGGREGATION OR CLUSTERING 
 
There are essentially two fundamental ways in which the idea of a hierarchy can be used. 

The first is by now clear: it has to do with modeling the real world 
hierarchically.  

The second is probably even more fundamental than the first and points to the 
real power of hierarchies in nature. It is to break things down into large groupings or 
clusters and then break each of these into smaller clusters and so on. The object would 
then be to obtain the priorities of all the elements by means of clustering. This is by far a 
more efficient process than treating all the elements together. Thus, it is immaterial 
whether we think of hierarchies as intrinsic in nature as some have maintained, or 
whether we simply use them because of our limited capacity to process information. In 
either case, they are a very efficient way of looking at complex problems. 

A useful way to deal with a larger number of elements which fall in a level of a 
hierarchy is to group them into clusters according to their relative importance. Thus, one 
would have one cluster of the most important (most similar, or closest) elements, another 
of those of moderate importance, and another of those of low importance. Then one 
compares in pairwise fashion the relative impact of the clusters on the relevant criteria of 
the next upper level. The clustering may differ from criterion to criterion. After this 
analysis of clusters, the elements in each cluster are then compared pairwise according to 
their relative importance in that cluster. If there are too many, again they may be put into 
clusters. In this way each element, since it belongs to several clusters, would receive 
several weights from the different clusters. There is no alternative to this process of 
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clustering and decomposition, particularly if one desires to maintain high consistency. 
Knowing this for a fact, one need not be intimidated with the size of a problem as he 
knows what can be done. We have carried out this process very successfully in many 
instances. It is easy to show mathematically that clustering should produce the same 
results as an overall approach would. 

 
 

A Distance Hierarchy 
 
The example or distances between cities will now be structured into a hierarchy. 

If we group the cities into clusters according to their falling in nearly equivalent 
distances from Philadelphia, we have three classes compared in the following matrix. 
 

 
Philadelphia 

Chicago 
Montreal 

London 
San Francisco 

Cairo 
Tokyo 

 
Eigenvector

Chicago 
Montreal  
London 
San Francisco  
Cairo 
Tokyo  
 

1 
 
7 
 
9 

1/7 
 
1 
 
4 

1/9 
 

1/4 
 
1 

0.056 
 

0.26 
 

0.68 

 
max = 3.15,         C.I = 0.08,             C.R. = 0.14 

 
If we now compare the cities in each cluster separately according to their relative 

distance from Philadelphia, we have on using for the 2 by 2 case the scale 1 + : 
 
 
Philadelphia 

 
Chicago 

 
Montreal 

Eigen- 
vector 

 
Philadelphia

 
Cairo 

 
Tokyo 

Eigen- 
vector 

Chicago 
Montreal 

1 
1/2 

2 
1 

0.67 
0.33 

Cairo 
Tokyo  

1 
1.5 

1/1.5 
1 

0.4 
0.6 

 
max = 2,    C.I. = 0,    C.R. = 0   max = 2,    C.I. = 0,    C.R. = 0 

  
 
Philadelphia 

 
San Francisco 

 
London 

Eigen- 
vector 

San 
Francisco 
London  
  

 
1 
1.3 

 
1/1.3 
1 

 
0.43 
0.57 

 
max = 2,    C.I. = 0,    C.R. = 0 

  
Now we multiply the first eigenvector by 0.056, the second by 0.26 and the third 

by 0.68 to obtain the overall relative distance vector. 
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Cairo 
 
Tokyo 

 
Chicago 

San 
Francisco 

 
London 

 
Montreal 

Recall that the actual 
result is: 

0.27 
0.278 

0.41 
0.361 

0.037 
0.032 

0.11 
0.132 

0.15 
0.177 

0.019 
0.019 

 
 
The Wealth Example as a Cluster 
 
The comparison of the worth of seven nations was made by means of clustering the 
notions into three groups: A = (U.S.), B = (U.S.S.R.), and C = (U.K., France, Japan, West 
Germany). The clusters were first compared, yielding the matrix 
 

 A B C  Eigenvector  
A 
B 
C 

1 
1/2 
1 

2 
1 
2 

1 
1/2 
1 

 0.4 
0.2 
0.4 

 
max = 3.00,     C.I. = 0.0,    C.R. = 0.0 

 
The elements of C were compared among themselves in the following matrix 

 
  

U.K. 
 

France 
 

Japan 
West 

Germany 
 

Eigenvector 
U.K.  
France  
Japan  
W. Germany 

1 
1 
3 
2 

1 
1 
3 
2 

1/3 
1/3 
1 

1/2 

1/2 
1/2 
2 
1 

0.14 
0.14 
0.45 
0.26 

 
max = 4.01,     C.I. = 0.003,     C.R. = 0.01 

 
 

The estimated relative wealth obtained this way is given by 
 

U.S. 
0.4 

U.S.S.R 
0.2 

U.K. 
0.056 

France 
0.056 

Japan 
0.18 

W. Germany 
0.10 

 
Let us assume that we have a set of n elements. If we wish to compare the 

elements in pairs to obtain a ratio scale ranking by solving the eigenvalue  problem,  
(n2n)/2 judgments would be necessary. Suppose now that 7 is the maximum number of 
elements which can be compared with any reasonable (psychological) assurance of 
consistency. Then m must be first decomposed into equivalence classes of seven clusters 
or subsets, each of these decomposed in turn to seven new clusters and so on down 
generating levels of a hierarchy until we obtain a final decomposition, each of whose sets 
has no more than seven of the original elements. Let {x} denote the smallest integer 
greater than or equal to x. We have 
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Theorem 4-3 The maximum number of comparisons obtained from the 
decomposition of a set of n > 1 elements into a hierarchy of clusters (under the 
assumption that no more than seven elements are compared simultaneously), is 
bounded by (7/2)(7{log n/log 7}1) and this bound is sharp. 

 
PROOF  We have the following for the number of comparisons in each level 
where we must have in the hth or last level at most seven elements in each cluster. 

 

2

77
7     

2

77
7     3

2

77
    2

0   1

2
2

2

2









hh



 

 
where 7h-2  7 = n, h = {log n/log 7}+ 1, h > 2. 
The sum of these comparisons is 

 

17(
2

7

17

17
21 }7log/{log

1





n
h

x ) 

 
To show that the bound is sharp it is sufficient to put n = 7m. 
 
 
REMARK  It looks as if the Saint Ives conundrum finds its solution in 

hierarchies. 
 

The efficiency of a hierarchy may be defined to be the ratio of the number of 
direct pairwise comparisons required for the entire set of n elements involved in the 
hierarchy, as compared with the number of pairwise comparisons resulting from 
clustering as described above. 
  
 

Theorem 4-4 The efficiency of a hierarchy is of the order of n/7. 
 
PROOF  To prove the theorem we must compare (n2-n)/2 with 

 

)17(
2
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Let n = 7m+     0   < 1 
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Then we clearly have  
 

7 2m+2  7m + /7(7m1)  7m + /7 = n/7 
 

Thus n/7 is equal to the efficiency. 
 
One might naturally ask why we do not use 2 in place of 7 for even greater 

efficiency. We note that in using a hierarchy we seek both consistency and good 
correspondence to reality. The former is greater the smaller the size of each matrix; the 
latter is greater the larger the size of the matrix due to the use of redundant information. 
Thus we have a tradeoff. Actually, we have shown, using the consistency index, that the 
number 7 is a good practical bound on n, a last outpost, so far as consistency is 
concerned. 
 

Suppose we have a set of 98 elements to which we want to assign priority. We 
decompose the problem into seven sets, each having on the average 14 elements. Now we 
cannot compare 14 elements, so we decompose each of these sets into two sets, each 
having no more than seven elements. We then compare the elements among themselves. 

To look at the efficiency of this process closely we note that if it were possible 
to compare 98 elements among themselves, we would require [(98)2  98]/2 = 4,753 
comparisons. On the other hand, if we divide them into seven clusters of 14 elements 
each, then do pairwise comparisons of the seven clusters, we need (72-7)/2 = 21 
comparisons. Each cluster can now be divided into two clusters each with seven 
elements. Comparing two clusters falling under each of the 14 element clusters requires 
one comparison, but there are seven of these, hence, we require seven comparisons on 
this level; then we need 14 x 21 = 294 comparisons on the lowest level. The total number 
of comparisons in this hierarchical decomposition is 21 + 7 + 294 = 322 as compared 
with 4,753 comparisons without clustering. Indeed the theorem is satisfied since 322 << 
4,753/7.  

Clustering a complex problem into hierarchical form has two advantages. 
 
(1) Great efficiency in making pairwise comparisons. 
(2) Greater consistency under the assumption of a limited capacity of the mind compare 

more than 7  2 elements simultaneously. 
 

The efficiency of a hierarchy has been illustrated by H. Simon with an example 
of two men assembling watches, one by constructing modular or component parts from 
elementary parts and using them to construct higher order parts and so on, and the other 
by assembling the entire watch piece by piece from beginning to end. If the first man is 
interrupted, he only has to start reassembling a small module, but if the second man is 
interrupted, he has to start reassembling the watch from the beginning. If the watch has 
1,000 components and the components at each level have 10 parts, the first man will, of 
course, have to make the components and then from there make subassemblies in a total 
of 111 operations. If p is the probability of an interruption while a part is being added to 
an incomplete assembly, then the probability that the first man completes a piece without 
interruption is (1 - p)10 and that for the second is (1- p)1000. For the first man, an 
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interruption would cost the time required to assemble five parts. The cost to the second 
man will, on the average, be the time needed to assemble 1/p parts, which is 
approximately expected number of parts without interruption. If p = 0.01 (a chance in a 
hundred that either man would be interrupted in adding any one part), the cost to the first 
man is 5 and to the second man 100. The first man will assemble 111 components while 
the second would make just one component. However, the first man will complete an 
assembly in (1-0.01)10 = 10/9 attempts whereas the second man will complete an 
assembly in e10 = (10.01)1000 + 1/44x 106 attempts. Thus the efficiency of the first man 
to that of the second man is given by 
 

000,2
}105]1)99.0/1{[(111

99.0/100
10

1000




 

 
In man-made systems, the task of managing a complex enterprise is, in general 

considerably simplified when it is broken down into subsystems or levels that are 
individually more tractable, i.e., a manager having a limited span of management. The 
steps of solving a large-scale problem are simplified and efficiently accomplished when 
they are modularized, e.g., by taking n sets of m variables each rather than by taking mn 
variables simultaneously. 
 
 
4-4 STANDARDIZING THE MEASUREMENT OF 
ELEMENTS IN A LARGE CLASS 
 
The elements are first ordered according to relative comparability and grouped into 
classes. In each class the measure on the elements is of the same order of magnitude. If 
two classes differ by more than one order of magnitude, an attempt is made to breakdown 
or decompose the elements in the class receiving the higher measurement into smaller 
elements. Otherwise the elements in the smaller class are aggregated to form one large 
element of the higher class. If neither of these alternatives is additional elements is 
possible, additional elements are brought into the comparison process that are 
intermediate between the two classes to enable transition from one class to another.  

In order to standardize the measurement between classes we use the largest 
element in the class of smaller weight elements also as the smallest element in the next 
larger class. One can also use the smallest element in the next class as the largest element 
in the smaller weights in order to help improve the accuracy. In this manner the weight of 
the element used in both classes can be used to uniformize or standardize the weights of 
both, yielding a single class with all its elements properly weighted. The procedure is 
then carried on up through all the classes, and in this manner we have a measure 
introduced on a large number of elements in a set. 
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4-5 CONSISTENCY OF A HERARCHY 
 
We have generalized the measurement of consistency to an entire hierarchy. What we do 
is to multiply the index of consistency obtained from a pairwise comparison matrix by the 
priority of the property with respect to which the comparison is made and add all the 
results for the entire hierarchy. This is then compared with the corresponding index 
obtained by taking randomly generated indices, weighting them by the priorities and 
adding. The ratio should be in the neighborhood of 0.10 in order not to cause concern for 
improvements with the actual operation and in the judgments. This has been applied to 
two examples. 

Applying the indices to the school selection example, we have 
 

First level priority vector: (0.32, 0.14, 0.03, 0.13, 0.23, 0.14) 
First level C.I.: C.I. = (7.49-6)/5 = 0.298 
2nd level vector of C.l.’s: (0.025, 0, 0, 0.105, 0, 0.025) 

 
Hence 

M = 0.298 + (0.32, 0.14, 0.03, 0.13, 0.24, 0.14) 323.0
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and using the corresponding R.I.’s we have 
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The consistency ratio of the hierarchy (C.R.H.) is therefore M/ M = 0.18; which is not 
very good, because it reflects the high inconsistency arising from (max = 7.49 for n = 6). 

For another example we have the following numbers. 
 

First level priority vector: (0.16, 0.19, 0.19, 0.05, 0.12, 0.30) 
First level C.I.: 0.07 
Second level vector of C.I.’s for 3 x 3 matrices: (0.01, 0.01,0.28, 0.025, 

0.0, 0.105) 
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Hence 

M = 0.07 + (0.16, 0.19, 0.19, 0.05, 0.12, 0.30) 159.0
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And       M = 1.24 + 0.58 = 1.82. 
 

The C.R.H. is M/ M  = 0.09 and is more acceptable than in the previous example. 
 
 
4-6  GRAPH THEORETIC INTERPRETATION OF PRIORITIES 
 
The following interpretation uses graph theory to lend geometric insight into the 
meaningfulness of the relations among the activities or objectives of a hierarchy level. 
See Appendix Two for a brief introduction to graphs. 

How can we be sure that the “more favored” activity in the pairwise comparison 
matrix obtains a greater priority value? Although we examine this question in an 
algebraic setting, it can also be intuitively appreciated through ideas from graph theory. 
 

Definition 4-7  Let the nodes of a directed graph G be denoted by 1, 2 .... , n. 
With every directed arc xij from node i to node j, we associate a nonnegative 
number, 0 < qij < 1, called the intensity of the arc. (Loops and multiple arcs are 
allowed.) 
 
Definition 4-8  A walk in a directed graph is an alternating sequence of nodes and 
arcs such that each node is the target of the arc in the sequence preceding it and 
the source of the arc following it. Both endpoints of each arc are in the sequence. 
The length of a walk is the number of arcs in its sequence. A walk of length k will 
be called a “k-walk.” 
 
Definition 4-9  The intensity of a walk of length k from node i to node j is the 
product of the intensities of the arcs in the walk. 
 
Definition 4-10  The total intensity of all k-walks from node i to node j is the sum 
of the intensities of the walks. 
 
REMARK  Note that for the total intensity of l-walks, one takes the sum of the 
intensities of all l-walks from i to j. These are simply the arcs connecting i and j. 
All intensities along i, j arc are assumed equal. Thus, the total intensity from i to j 
is given by tij = pijqij where pij is the number of arcs from i to j and qij is the 
intensity of each arc. 
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Definition 4-11  Given a directed graph D, the intensity-incidence matrix U = 
(uij) is defined as the matrix whose entries are given by uij = tij for all i and j. 

 
The following example is presented to clarify the concepts given above. In Fig. 

4-1, the number beside each arc indicates its intensity. 
The intensity-incidence matrix U associated with this graph is given by 
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The total intensity of l-walks from i to j is given by the (i, j) entry of this matrix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-1 
 
 
The total intensity of a walk of length 2 from node 1 to node 3, for example, is equal to 
the sum of the following three quantities, with the associated walk indicated on the right. 
(Note that each arc between the first two nodes is taken once with every arc between the 
two nodes.) 
 

3[(1/2  1) + (1/2  1) + (1/2  1)]: 1, x12, 2, x23, 3 
2(1  1); 1, x11, 1, x13, 3 
2(1  1); 1, x13, 3, x33, 3 
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The sum of these quantities is equal to 17/2. This is the entry in the (1, 3) position of the 
matrix U2. In this manner one can show that for every i and j, the total intensity of  
2-walks from node i to node j is the (i, j) entry of the matrix 
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This result may be generalized according to the following easily-proved theorem. 
 

Theorem 4-5 The (i, j) entry, uij,(k), of Uk is the total intensity of k-walks from 
node i to node j. 
 
COROLLARY  If qij = 1 for all i and j, then the (i, j) entry in Uk gives the number  
of k-walks from i to j. 

 
 
The Concept of Dominance with Respect to a Property: The Converse Problem 
 
In the foregoing, we went from a graph to its corresponding matrix to study the idea of 
the intensity of k-walks. The converse problem of interpreting the powers of a matrix as a 
method of enumerating intensity of walks is important for our problem. 

We associate with each of the n activities in our pairwise comparison procedure 
a node of a directed graph D. In that case, the intensity-incidence matrix U is the same as 
the judgment matrices discussed in Chap. 1. The numerator pij of the (i, j) entry of this 
matrix (assumed to be in relatively prime fractional form) represents the number of arcs 
directed from vertex i to vertex j. The intensity of each arc from i to j is the same, and is 
equal to the reciprocal qij of the denominator of the entry. This is a natural way of 
defining the associated graph since for qij = 1, it reduces to the ordinary vertex matrix 
whose kth power gives the number of walks of length k. 

The entry in the (i, j) position of the matrix A may be interpreted as the direct 
dominance or intensity of importance of activity i with respect to activity j. It signifies the 
relative contribution that activity i makes towards the fulfillment of a certain objective as 
compared with the contribution made by activity j. It signifies the relative contribution 
that activity i makes towards the fulfillment of a certain objective as compared with the 
contribution made by activity j. The normalized row sums of A give the level of 
contribution of the corresponding activities relative to all activities. The normalized row 
sums of A2 provide this index of relative importance of dominance by considering all 2-
walks thus giving indirect comparison between pairs through a single intermediate vertex. 
Hence, an activity’s level of importance is enhanced or reduced depending on its 
interdependence with other activities. In general, the net effect of dominance between 
activities is obtained by taking the limiting value of the row sum of Ak, the kth power of 
A. When normalized by the sum of these row sums, each number serves as an overall 
index of relative dominance or priority among the activities. 
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Formally, the concept of relative dominance of activity i over activity j in k-steps 
may now be explained in terms of the total intensity of all k-walks from node i to node j. 
Relative dominance of an activity i over another activity j, directly and indirectly through 
intermediate activities, in k-steps is given by the (i, j) entry of the matrix Ak. Because of 
the presence of a loop at each vertex, it turns out that each entry of Ak is a sum of all 
walks of length less than or equal to k. How many times each walk is included is related 
to its length and to the number of permutations of its loops to obtain the desired walk 
length. A loop by itself contributes unit intensity to the walk. Thus, the total intensity of a 
walk is unchanged by going around the loop several times. It is important to note that the 
limiting result is identical to the one we derived by different considerations previously. 
 

Theorem 4-6  Let A = (aij) be the n  n comparison matrix. The (i, j) entry, aij(k), 
of the matrix Ak gives the relative dominance (or importance) of activity i over 
activity j in k-steps. 
 
PROOF This follows directly from the above correspondence and the last 
theorem. 
 
Definition 4-12 An index of dominance, wi(k), of activity i over all other 
activities in k-steps is defined to be 
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Thus, wi(k) is the ith row sum of Ak divided by the sum of the rows. 
 
Definition 4-13 A total index of dominance, wi, of activity i over all other 
activities is defined by 
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Definition 4-14  The priority index associated with activity i is its total index of 
dominance wi. 
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CHAPTER 

SIX 
 

PLANNING, CONFLICT RESOLUTION,  
AND OTHER APPLICATIONS 

 
 
 
6-1 INTRODUCTION 
 
In this chapter, we shall give a select collection of applications. Several of these 
applications derive from actual decision-making situations. Others are given for 
variety, particularly to show how the method can be adapted for vastly different 
purposes. All are severely abbreviated to save space and include more examples. The 
Sudan Study alone has 1,700 pages. 

To save space, we shall not attempt to define carefully the elements in every 
hierarchy. However, the examples are usually sufficiently clear that the reader will 
obtain an adequate understanding of the nature of the problem and the hierarchical 
representation it received. In addition, we have included only a few matrices to 
illustrate an idea or to give him an opportunity to compare his judgments in some of 
these examples, and to help him become involved in the process. 

In the analysis of most of these applications, different contingencies can 
occur, each with some risk. Therefore, in estimating likely outcomes it is useful to list 
in the second level of the hierarchy the various contingencies in order to obtain a 
balanced assessment of which future is most likely to occur. For many problems, the 
use of planning scenarios in the second level is one way of taking care of contingency 
planning. This we have done in the extensive application we made in designing the 
Sudan Transport System for 1985. 

We begin the chapter with two applications, one concerned with prioritizing 
resources and the other with world influence. We then move on to a discussion of 
planning and conflict resolution illustrating the systematic use of the AHP in these 
areas. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  6-1 
 

Overall contribution 
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6-2 INTEGRATED FINDINGS OF RESOURCE PRIORITIES  
FOR A DEVELOPING NATION 
 
The AHP has been applied to develop an overall estimate of priorities, both for the 
seven most important minerals found in a developing country and for six criteria 
associated with them. This has been done so that future as well as present potentials 
may be considered in shaping a mineral exploration strategy. 

The hierarchy has a structure depicted in Fig. 6-1. 
Our definitions of the criteria are as follows: Resources value This is the 

potential monetary value of the particular mineral if developed in the country in 
proportion to what has been projected for the entire region of the continent. Within 
this region, areas exist for which mineral production has been documented. 
Calculations of the potential in the country are based upon this material. The lag in 
time between mine production and data summaries makes valid the possibility that 
present discoveries and ore extraction may be higher. Exploration cost This is the 
estimated cost for mineral exploration by air and ground crews including drilling, 
laboratory analysis, and backup facilities. Risk This is a measure of the potential 
success for finding the mineral deposit and in the quantity projected. Risk is low as 
the price and demand go up. Demand A measure of the projected world supply and 
demand. Is the mineral in abundant supply and low demand or is it in low supply and 
high demand? Strategic considerations This judgment is based upon two factors. 

 
(1) The role which a mineral could play to advantage in terms of worldwide energy 

resource development or political leverage. Iron ore, for example, is considered 
strategic as a vital resource. Uranium, on the other hand, which has not yet been 
explored, should be regarded as a strategic resource to the region as a whole but 
not necessarily for the nation. 

(2) The possibility that the country could become an alternative supplier of a material 
considered strategic to the United States or other developed countries. 

 
Accessibility An accessible mineral is one whose source is near a transportation 
route. An inaccessible one is in a desolate area, the cost of development of which may 
be uneconomical. 

The question posed was: How strongly dominant is one mineral relative to 
another with respect to industrial/economic development based on reserve estimates? 
Then the six criteria were compared according to their importance with regard to each 
of the seven minerals. The question here was (for each mineral): How strongly more 
important is one criterion over another in the development of the mineral? 

All priorities are given in the Tables 6-1 – 6-3. 
 
Table 6-1  Mineral priorities 
 
Iron 
Copper 
Phosphate 
Uranium 

0.40 
0.26 
0.15 
0.09 

Aluminum 
Gold 
Diamond 

0.04 
0.04 
0.02 
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Table 6-2  Criteria priorities 
 

 Iron Copper Phosphate Uranium Aluminum Gold Diamond 
Resource 

value 
Exploration 

cost 
Risk 
Demand 
Strategic 

importance 
Accessibility  

 
0.44 
 
0.05 
0.05 
0.13 
 
0.26 
0.07 

 
0.41 
 
0.15 
0.03 
0.20 
 
0.16 
0.05 

 
0.44 
 
0.08 
0.07 
0.23 
 
0.11 
0.07 

 
0.34 
 
0.03 
0.05 
0.15 
 
0.29 
0.14 

 
0.33 
 
0.11 
0.34 
0.07 
 
0.04 
0.11 

 
0.18 
 
0.21 
0.26 
0.07 
 
0.03 
0.25 

 
0.13 
 
0.15 
0.50 
0.04 
 
0.04 
0.14 

 
Table 6-3  Composite weights for all criteria 
 

 Total Iron Copper Phosphate Uranium Aluminum Gold Diamond 
Resource 

value 
Exploration 

cost 
Risk 
Demand 
Strategic 

importance 
Accessibility  

 
0.04 
 
0.09 
0.08 
0.16 
 
0.19 
0.08 

 
0.18 
 
0.02 
0.02 
0.05 
 
0.10 
0.03 

 
0.11 
 
0.04 
0.008 
0.05 
 
0.04 
0.013 

 
0.07 
 
0.01 
0.01 
0.034 
 
0.017 
0.01 

 
0.03 
 
0.003 
0.004 
0.014 
 
0.03 
0.013 

 
0.01 
 
0.004 
0.014 
0.003 
 
0.002 
0.004 

 
0.007 
 
0.008 
0.01 
0.003 
 
0.001 
0.01 

 
0.002 
 
0.003 
0.01 
0.001 
 
0.003 
0.003 

 
 
Let us interpret these results. The existing estimates indicate that iron and 

copper together constitute two thirds of the projected future impact produced by 
minerals on the economy. The role of phosphates is to increase to a noteworthy 15 
percent level. The influence of each of the remaining minerals seems to be 
individually negligible, but together they comprise an aggregate influence on the 
economy of about 20 percent. 

Now let us examine the criteria. The relative resource value of the first four 
minerals is higher than for any other criterion. In the case of aluminum, gold, and 
diamonds it turns out that the risk involved is higher than the resource value, which is 
to be expected since there has been little attempt to look into the degree of availability 
of these minerals. For example, the value of diamonds at 0.13 is about one-fourth the 
loss from risk whose value is 0.50. In addition, the demand for these minerals as seen 
at present may not be great. The projected relative demand for phosphate is seen to be 
the greatest of all the minerals because of its value to agriculture, the most intense 
activity in the world. 

The composite set of weights show that the overall benefit of the resources: 
their value, their strategic importance and accessibility by far offset the negative 
criteria of exploration cost and risk by a factor of 67 to 17 or approximately 4 to 1. In 
practical terms this says what is known qualitatively, that the nation must do all it can 
to identify its resource potentialities and its economic future based on projected 
variability in demand and mineral price and its availability elsewhere in the world. 

The projected resource value essentially lies in iron, then copper, then 
uranium. The exploration cost is low for all minerals compared to their value, and is 
highest for copper then iron then phosphate. The risk loss is highest for iron and 
lowest for copper. The projected demand is about equal for iron and copper with 
phosphate as a runner-up. The strategic importance of iron is by far the greatest for 
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the nation. Copper is a low second. Accessibility is the greatest for iron with copper, 
uranium, and phosphate following. 

It is safe to ignore the extraction of the other minerals at this time. 
 
 
6-3 A MEASURE OF WORLD INFLUENCE 
 
It is not unusual to think and write about power without adequate definition. A look at 
the Oxford English Dictionary shows why. Power is such a rich concept that even for 
special use it would carry more meaning than may be intended. Power is closely 
identified with the ability to do something (Bell and Wagner, 1969). Influence is the 
capacity to sway others to obtain favorable results in the pursuit of objectives. 
Influence greatly benefits from the potential use of certain forms of power to achieve 
ends. 

Wagner (in Bell and Wagner) indicates that the difficulty to define power is 
related to a lack of agreement in politics as to who has power and how much. Klaus 
Knorr makes a strong distinction between putative power (the capability to make 
effective threats) and actualized power (actually achieved influence). Both concepts 
catch a part of reality. Examples of both kinds are easily perceived in military power, 
economic power, racial power, political power, healing power, purchasing power, etc. 
Herbert Simon (see Bell and Wagner) sees in his definition of power an asymmetrical 
relation between influencer and influencee and makes the principal conclusion 
regarding the measurement of power that one should admit many other kinds of units 
besides cardinal numbers. 

Robert Dahl (in Bell and Wagner) makes the interesting observation that “the 
main problem is not to determine the existence of power but to make comparisons.” 
This is precisely what we do here. Of some relevance to our presentation is the 
following observation: 
 
J.G. Stoessinger writes “…the image of the world situation that top policy makers 
have constructed and accepted as objective in their own minds is more important than 
any other image, including the correct one.” Our concept of influence (Saaty and 
Khouja, 1976) has an analogy with a mix of Knorr’s definition of power. Influence 
derives from demonstrated past actions and from an imputed capability to make an 
effective contribution to solve a problem given the opportunity to do so. 
 

Below we develop an overall index of power for seven nations as it is 
derived from separate indices based on five attributes with respect to which the 
nations are individually compared. The attributes are themselves compared with 
regard to their perceived impact on world influence, and the result is used to weight 
each of the previous five indices and then composed to obtain the overall power 
index. 

Our measure of influence derives from the following factors relating to each 
nation: (1) human resources, (2) economic strength (which we call wealth), (3) 
technology, (4) trade, and (5) military strength. Other factors such as politics, social 
stability, culture, and communication were not included, although they can be added 
without difficulty. 

By the influence of a nation through its human resources, we mean its 
potential capability to mobilize its population to carry out missions affecting the rest 
of the world whether in producing essential products such as foodstuffs, machines, 
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medicines, or more generally ideas of importance that would contribute to solving 
major world problems. 

By economic influence, we mean the total production of goods and services 
of a nation, particularly as it reflects in its standard of living, its ability to sustain 
growth and to support and develop new ideas and new technologies and in a capacity 
to provide economic aid to other nations. 

Technology is the level of scientific and technical progress achieved by a 
nation including organizational and managerial capability, with a capacity to sustain a 
notable pace of technological development. 

Trade is the value, pattern, and structure of exports and imports undertaken 
by the nation with the rest of the world, including the degree of concentration enjoyed 
with respect to its trade relations with other countries. 

Military strength is the amount of weapons (especially nuclear weapons) and 
manpower, the degree of mobility and the strength of alliances which a nation has. 

The seven nations (studied in 1973) were the United States (U.S.A.), the 
Soviet Union (U.S.S.R.), China, France, the United Kingdom (U.K.), Japan and West 
Germany. Now we have a hierarchy at whose lowest level are the seven nations, 
dominated by a level consisting of the five objectives described above, which in turn 
are dominated by a single element level “world influence”. The hierarchy of this table 
has the form shown in Fig. 6-2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6-2 
 
 

The pairwise comparison matrix for the contribution of the seven nations to 
world influence through their wealth has been discussed in Chap. 2. The four other 
matrices and the matrix of the criteria will not be given here (see Saaty and Khouja, 
1976). The final eigenvectors and the composite weights are shown in Tables 6-4 and 
6-5. 

World influence 

Criteria: Human 
resources 

Wealth Technology Trade Military 
strength 

Nations: U.S. U.S.S.R. China France U.K. Japan West 
Germany 
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Table 6-4 Normalized eigenvectors corresponding to five criteria 
 

 Human  
resources 

 
Wealth  

 
Trade 

 
Technology

Military  
Strength  

Priorities of  
criteria  

U.S.A. 
U.S.S.R. 
China 
France 
U.K. 
Japan 
West Germany 
 

0.339 
0.123 
0.057 
0.134 
0.116 
0.116 
0.155 

0.429 
0.231 
0.021 
0.053 
0.053 
0.119 
0.095 

0.332 
0.042 
0.020 
0.089 
0.070 
0.239 
0.209 

0.458 
0.068 
0.018 
0.109 
0.109 
0.119 
0.119 

0.443 
0.304 
0.070 
0.072 
0.068 
0.021 
0.021 

Human 
  resources  0.043  
Wealth 0.393 
Trade 0.228 
Technology  0.136 
Military 
  strength  0.199 

max =  7.023 7.608 7.968 7.424 7.576  5.187 
C.I = 0.003 0.101 0.161 0.071 0.096  0.047 
C.R. = 0.002 0.077 0.122 0.054 0.073  0.042 

 
   
Table 6-5 Weighted result as relative measure of world influence (1973) 
 

U.S.A. U.S.S.R. China France U.K. Japan West Germany 

0.409 0.175 0.032 0.076 0.070 0.127 0.112 

 
We now compare the previous results with some experimental work on power 

and its measurement done by Shinn. Assuming that perceptions are necessarily 
important determinates of human action, Shinn used a power function model (see 
Stevens, 1957) to derive a single index for measuring power. He attempted to capture 
perceptions of national power P held by students in two international politics courses 
by asking questions and arranging the answers and using magnitude estimation. He 
expressed power by a single expression in terms of the size of the nation’s population, 
the level of its economic development in terms of its GNP and the resources it devotes 
to military purposes. He obtained 
 

P = 0.37(Pop.)0.41 (G NP)0.62 (Mil.)0.28 
 
Shinn notes that this expression serves well to account for just over 96 percent of the 
observed variation in the data (of averages taken over all subjects) assuming that 
variation between individuals is due to random measurement error. 

Table 6-6 supplies information on the population (in millions), GNP, and 
military expenditures (in billions of dollars) which was introduced in Shinn’s formula. 
The results obtained were normalized to obtain a relative index of power to be 
compared with the corresponding relative index obtained from the human resources, 
wealth, and military strength factors through the eigenvalue method. 
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Table 6-6 
 
 
 
Country 

  
 
Pop. 

 
 
GNP 

 
 
Mil. 

Normalized 
index using 
Shinn’s formula 

Normalized 
eigenvector 
power index 

U.S.A.  
U.S.S.R.  
China  
France 
U.K. 
Japan 
W. Germany 

210 
242 
800 
  50  
  46 
105 
  59 

1,167 
   635 
   120 
   196 
   154 
   294 
   257 

85.2 
65.8 
  4.5 
  8.5 
  8.7 
  3.5 
11.1 

0.435 
0.294 
0.081 
0.042 
0.035 
0.057 
0.057 

0.426 
0.246 
0.039 
0.064 
0.062 
0.088 
0.076 

  
 

It is worth noting that although Shinn considers the size of a population 
always an asset in measuring power, we may not. For example, the very large Chinese 
population is a liability as it is now difficult to feed and to mobilize effectively in the 
pursuit of goals. This observation, along with the fact that military expenditures do 
not allow for power discrepancy through nuclear weapons may explain some of the 
deviations between the two results. It is doubtful that Japan and Germany and even 
England and France, would be ranked below China today on a power scale. In any 
case, the figures in both scales fall in the same ballpark. Of course, they can both be 
equally bad, but the fact that they were obtained independently at different times and 
by different methods makes their closeness strikingly interesting. 
 
 
6-4 TWO-POINT BOUNDARY VALUE PROCESSES:  
FORWARD AND BACKWARD PLANNING 
 
Planning is a dynamic and purposeful activity concerned with steering a system from 
a likely outcome to a desired outcome. The likely or projected outcome is the resultant 
scenario or state of the system determined by the existing state and the actors who 
pursue their objectives, policies, and individual outcomes. Estimating the likely future 
is called the forward planning process. It is a descriptive process of what can happen. 
The desired outcome is brought about by applying policies to influence actors to 
remove obstacles in the way of this outcome. This is the backward planning process. 
It is a normative or prescriptive process. The effectiveness of change in objectives or 
new policies is tested in the forward process to see if the resultant future is brought 
closer to the desired future. If not, objectives and policies and even the desired future 
are altered for greater success in the projected outcome. There is repeated iteration of 
forward projection and backward policy improvisation. It is in this manner that the 
two-point boundary process fixed at the likely and desired futures is carried out. 

The same procedure can be used to produce stable outcomes in a conflict. 
Conflict resolution is concerned with improving each party’s position from an existing 
to a more desired state. Iterations must consider the availability of policies to each 
party and bounds on these policies in a simultaneous fashion. 

Although planning for a process over which one has control should use the 
iterations we just described, other aspects of planning may simply involve exploration 
of the forward or the backward processes. After a brief discussion of scenarios we 
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shall illustrate the forward, the backward, and the joint forward-backward processes 
through applications we have made of them. 

A scenario is a portrayal of the particular idea or subject being emphasized 
(e.g., a transport system) with an “adequate” account of its interaction with 
environmental, social, political, technological, and economic factors. It follows that a 
faithful scenario analysis must examine, in considerable depth, projections of all these 
factors in order to arrive at a convincing description of the state of the particular 
subject under various possible assumptions. In some of these approaches to scenario 
construction, one must guard against free use of uninhibited or undisciplined 
imagination and avoid falling into a science fiction type of prognostication. 

There are two general types of scenarios. They are as follows. 
 
(1) Exploratory Scenario The idea here is to explore in a set of trend-seeking 

scenarios, alternative futures, examining events that are logically necessary for a 
possible future by parameterizing the principal components of the system under 
study. Its starting point is the present. Limiting scenarios are constructed in 
conjunction with trend-seeking scenarios to constrain the possible futures through 
parametric variations and by careful examination of the hypotheses of evolution 
from the present. The Exploratory Scenario is often used as a technique to force 
the imagination, stimulate discussion, and attract the attention of decision-makers 
to specific issues. The trend-seeking scenario does not make use of references to 
theory and methodology. Its practitioners, although they take its conclusions with 
a grain of salt, argue that so far as making errors in predicting the future, they are 
in good company with all the other methods. 

(2) Anticipatory Scenario This approach is concerned with the conceptualization of 
feasible and desirable futures. Unlike the exploratory scenario which proceeds 
from the present to the future, anticipatory scenarios follow the inverse path by 
starting with the future and work backwards to the present to discover what 
alternatives and actions (trajectory corrections) are necessary to attain these 
futures. There are two types of Anticipatory Scenarios: The normative scenario, 
which determines at the start a set of given objectives to be realized and defines a 
path for their realization (one version is to idealize the objectives and find 
technologically feasible means with viable descriptions to reach them); and the 
contrast scenario which is characterized by a sketch of the desirable and feasible 
future which is on the boundary of the anticipatory scenario. Each contrast 
scenario emphasizes sharply a particular range of assumptions whose totality 
comprises the convex hull of the possible futures. Normative or contrast scenarios 
are synthesized into a composite scenario which retains the properties of each of 
the scenarios with appropriate mix or emphasis. Since the future is shaped by a 
variety of forces or interests, each seeking the fulfillment of its particular 
objectives, the synthesis of a wide ranging set of scenarios into a composite 
scenario must take into consideration the actors who influence the future, their 
objectives and the particular policies they will pursue in each scenario to fulfill 
their objectives. Thus, the normative process of constructing the composite 
scenario must reflect the priority of the actors according to importance to bring 
about a certain degree of fulfillment of the building blocks of each scenario. 

 
A major technical problem in scenario construction is how to construct a 

composite scenario from a large set of scenarios which defines the “cone” of the 
future. 
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Some of the most important components of scenario construction are the 
following: 
 
(1) Definition of the general system and of external and internal constraints and 

identification of subsystems. 
(2) Hierarchical structuring of subsystems and identification of regulating 

components. 
(3) Definition of the states of the system and modeling its historical development. 
(4) Scenario treatment of the historical analysis highlighting the system’s evolution 

and its impacts on characteristics or the society together with examination of the 
internal dynamics of the model. 

(5) Definition of the objectives of the scenario with a discussion of their values. 
(6) Choice of the types of scenario to be used. 
(7) Development of a database of past, present, and future information. 
(8) Identification of the structural components, factors which offset equilibrium. 

evolutionary tendencies of the system. 
(9) Description of the tensions inherent in the functional mechanisms. 

(10) Analysis of the regulators of the system and of its coherence. 
(11) Critique and revision of the previous analysis, refinement of the scenario by 

examining constraints, disequilibrium, tensions, forces, contradiction, intervention 
of the regulators, and statement of the contradictions which affect the survival of 
the system. 

(12) Produce an improved scenario. 
 

Probably, the best answer to the question of validation of the scenario 
approach is that it is a unique aid in forecasting the future. Its conclusions should be 
amenable to reasonable interpretation. The results derived from it for implementation 
should be categorized into urgency classes and only the most urgent projects 
implemented first and after a period, the planning process is then revised or iterated. 
 
 
6-5  FUTURE OF HIGHER EDUCATION IN THE 
UNTED STATES (1985-2000): FORWARD PROCESS 
 
This description is based on an experiment conducted by twenty-eight college level 
teachers, mostly from the mathematical sciences, under the leadership of the author at 
an NSF Chautauqua type course in Operation Research and the Systems Approach in 
February 1976. The problem was to construct seven weighted scenarios and a 
composite scenario which would describe the future of higher education in the United 
States during the period 1985-2000 (Saaty and Rogers, 1976). 

Figure 6-3 presents the hierarchical structure of the factors, actors, and their 
motivating objectives which the group saw as the influences which would affect the 
form that higher education will take between 1985 and 2000. No strict definitions of 
the various terms will be given although during the development (which took 
approximately nine hours) comments were made on the intended meanings. 

Seven scenarios are offered. 
 
(1) (PRO J) 1985-Projection of the present status quo (slight perturbation of present). 
(2) (VOTEC) Vocational-technical oriented (skill orientation). 
(3) (ALL) Education for all (subsidized education). 
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(4) (ELITE) Elitism (for those with money or exceptional talent). 
(5) (APUB) All public (government owned). 
(6) (TECH) Technology based (little use of classroom use of media, computers).  
(7) (PT) Part-time teaching no research orientation. 
 

The characteristics which were considered and which were calibrated so as to 
give profiles of the various scenarios are given in Table 6-7. The calibration numbers 
are integers between –5 and 5 (this scale was changed later to a –8 to 8 scale to 
correspond to the 19 ratio scale). These measurements were arrived at by consensus. 

 
 

Table 6-7  Seven scenarios and the calibration of their characteristics.
Scale: 

Scenario weighs 0.096 0.259 0.191 0.174 0.122 0.068 0.081
1 2 3 4 5 6 7 Composite

Characteristics Proj Vote All Elite Apub Tech PT weight

Students
1. Number -2 +2 +4 -3 -1 +2 -2 0.42
2. Type (I.Q) -1 -2 -3 +3 -1 -2 -1 1.0
3. Function +1 -1 0 +1 0 -2 +2 0.03
4. Jobs +1 +4 -3 +4 +1 -2 +1 1.32

Faculty
1. Number -2 +2 +4 -3 -1 -5 -4 -0.22
2. Type (Ph.D) +1 0 -2 +3 +1 +2 -3 0.25
3. Function (role on campus) -2 -3 -2 +1 -2 -5 -5 -2.12
4. Job security -2 +1 +2 -3 -1 -4 -4 -0.79
5. Acad. Freedom 0 -2 0 +2 -1 -4 -5 -0.97

Institution
1. Number -1 +2 +2 -3 -1 -4 -1 -0.19
2. Type (acad./non-acad.) -1 -4 -3 +3 -1 -3 -3 -1.75
3. Governance +2 +4 +1 -2 +2 +5 +5 2.06
4. Efficiency +2 +3 -2 +4 -1 -1 0 1.09
5. Accessibility 0 +2 +5 -3 +2 +4 +1 1.55
6. Culture-entertainment 0 -2 +3 +3 +1 -3 -1 0.41
7. Available $ and other
    resources -1 +2 +2 -2 0 -1 -3 0.64

Education
1. Curriculum (lifelong
    learning) +1 +2 +3 +1 0 -1 -1 0.5
2. Length of study 0 +2 0 +1 +2 0 0 -0.14
3. Value of a degree -1 -2 +4 -1 -2 -2 -2 -0.29
4. Cost per student +3 +3 +4 +2 -1 -1 -1 2.43
5. Research by faculty +1 -1 +3 +1 -3 -3 -4 0.24

55 
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Figure 6-5  A hierarchy of influences on higher education 
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Zero (0) represents things as they now are (in the group’s opinion). Positive 
integers represent the various degrees of “increasingness” or “more than now”. 
Negative integers represent various degrees of “decreasingness” or “less than now”. 
For example, under InstitutionGovernance we see a 5 for scenario 6. This means that 
the group thought that there would be a very large measure of administrative control 
(relative to the state of things at present) in a technology-based higher education 
system in 1985 and after. On the other hand, if scenario 2 (Education for all) was to 
prevail, then the value of a degree (EducationValue of a degree) would diminish 
considerably (2) compared to how it is valued today. The row “Scenario weight” and 
the column “Composite weight” should be ignored for the moment but will be filled 
in the course of the discussion. 

We first developed a matrix of pairwise comparisons of the factors relative 
influence on higher education. 

The next step was to find the importance of the actors relative to their impact 
on the factors which affect higher education. This is done by multiplying the matrix of 
eigenvectors of the actors with respect to each factor in level II on the right by the 
eigenvector obtained for level II. 
 
 ECON POL SOC TECH     

S 
F 
A 
G 
P 
I 

0.04 
0.02 
0.06 
0.47 
0.12 
0.28 

0.04 
0.04 
0.03 
0.49 
0.12 
0.27 

0.10 
0.07 
0.04 
0.41 
0.12 
0.26 

0.02 
0.10 
0.03 
0.23 
0.16 
0.44 

0.55 
 

0.11 
0.24 

 
0.21 

E 
 

P 
S 
 

T

0.05 
0.05 
0.05 
0.46 
0.14 
0.34 

S 
F 
A 
G 
P 
I 

 
Since Government and Industry account for 80 percent  (= 0.46 + 0.34) of the 

impact on the four primary factors which affect higher education, it was decided to 
use only these two actors to obtain the weights for the scenarios. Should one decide to 
use more actors, the computations follow the same procedure shown below, but the 
amount of work is increased. 

Now we want to find the important objectives of the two actors; government 
and industry. To do this, we multiply the eigenvector for objectives by the respective 
actor weight which was just calculated. 
 
 

For Government: 0.46  

0.20 
0.52 
0.09 
0.11 
0.05 
0.03 

= 

0.09 
0.24 
0.04 
0.05 
0.01 
0.01 

Prosperity 
Civil order 
Manpower 
Rel. int’l Power 
Technology 
Creating oppor. 

For Industry: 0.34 

0.04 
0.08 
0.33 
0.55 

= 

0.01 
0.03 
0.11 
0.19 

Manpower  
Technology 
Profit 
Perpetuation and power 

 
 

= 
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From this we see that the most influential objectives are prosperity and civil order for 
Government and profit and perpetuation and power for Industry. Using these four 
objectives and normalizing their weights we get the weight vector: 
 

0.14 
0.38 
0.17 
0.30 

Prosperity 
Civil order 
Profit 
Perpetuation and power 

 
This vector will be used to get our scenario weights. 
The scenarios were weighted with respect to the four objectives. To obtain 

the scenario weights, we multiply the matrix of eigenvectors of the scenarios by the 
weight vector for the objectives: prosperity, civil order, profit, and perpetuation and 
power. This product yields the scenario composite weights. 

 
Scenario PROS C.ORD PROF P & P    Scenario

1 
2 
3 
4 
5 
6 
7 
 

0.129 
0.329 
0.275 
0.041 
0.149 
0.032 
0.045 

0.125 
0.180 
0.369 
0.033 
0.177 
0.050 
0.065 

0.067 
0.309 
0.028 
0.331 
0.048 
0.129 
0.089 

0.062 
0.306 
0.026 
0.330 
0.085 
0.075 
0.115 

0.14 
 

0.38 
 

0.17 
 

0.30 

= 

0.096 
0.259 
0.191 
0.174 
0.122 
0.068 
0.081 

1 
2 
3 
4 
5 
6 
7 

 
Next we use these weights in Table 6-7 for “scenario weights” to compose 

the values of the variables yielding the right column of Table 6-7 as we said earlier 
that we would be doing. 

We note that the second scenario has the greatest weight 0.259. This can be 
interpreted as the scenario most heavily favored by the group. A description of this 
scenario could be as follows. 
 
“Higher education in the United States in 1985 and beyond will be vocational-technical 
oriented. There will be more students who will be less bright (as measured by I.Q.) and who 
will be a little less active in influencing the institution, but they will have no problem in 
getting jobs upon graduation. 

“There will be more faculty of about the same intellectual level as today, but they 
will have considerably less to say about the governing of the university. Their job security 
will be a little better than it is now, but there will be less academic freedom. As for the 
institutions, there will be more of them, but with much less academic orientation. The 
administration will control things to a much greater degree and the efficiency (less student 
attrition) will be considerably higher. The schools will be more accessible, but their cultural 
and entertainment roles will decrease somewhat. The availability of dollar and other resources 
will be greater than at present. 

“Finally, the type of curriculum will be more vocationally (skill) oriented with less 
of the learning experience which benefits one for a lifetime. The length of time it takes to 
complete a degree program will be considerably less and the value of a degree will not be any 
more or less than at present. The per student cost will rise quite a bit. There will be a little less 
research going on”. 
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We now obtain the composite scenario: a single scenario obtained by finding 
composite scale measurement for each of the characteristics. The composite scale 
measurement for a characteristic is obtained by forming the sum of the products of 
scenario weight by the corresponding characteristic measurement, for example, for the 
number of students we have 
 
(2) (0.096) + (2) (0.259) + (4) (0.191) + (3) (0.174) + (1) (0.122)+ 
                                                                        (2) (0.068) + (2) (0.081) = 0.420 
 

This measurement is found in Table 6-7 in the last column on the right. 
Similarly for the other characteristics. An interpretation of the composite scenario 
from the values of its characteristics might be: 
 
“Higher Education in the United States in 1985 and beyond will witness not much, if any, 
increase in total enrollment. The student will exhibit slightly lower performance levels as 
measured by the type of standardized tests we have today. Students will play about the same 
role as they do today in setting university educational policy. Their chances for jobs upon 
graduation will be a little better than at present. 

“The Faculty characteristics will be about the same as today regarding numbers, 
Ph.D. holders, and job security. However, faculty will play considerably less of a role in 
campus affairs while possessing a little more academic freedom. 

“The number of institutions of higher education will not change much, if at all. They 
will be definitely less academically oriented with the administration exhibiting more control. 
There will be some increase in efficiency (less student attrition). Accessibility will be greater, 
but their cultural and entertainment roles will be about the same as today. There will be 
practically no increase in dollar resources. 

“The lifelong learning qualities of the curriculum will not undergo much change, 
nor will the length of study, the value of a degree. Costs will continue to increase 
significantly. The amount of faculty research will be at a lower level.” 

 
In the course of the study it was suggested that different results might be 

obtained by eliminating the level of factors and weighting the actors according to their 
direct impact on higher education. This produced the following eigenvectors. 
 

Actors: 
Weights: 

S 
0.09 

F 
0.04 

A 
0.05 

G 
0.44 

P 
0.09 

I 
0.28 

 
These are in close agreement with the ones obtained by keeping the level of factors. In 
search of a way to make the faculty have greater importance, it was suggested that 
another primary factor, ideology, be included in the second level. This again did not 
change the results significantly and it was decided to keep ideology out. 

The question sometimes arises as to who will rank the actors according to 
their power and how can anyone be entrusted to do it. If the actors themselves 
participate in the evaluation, each will want a high priority. We believe that this 
problem can be alleviated or solved by inserting a level in the hierarchy between the 
actors and the overall objectives which should consist of criteria reflecting a variety of 
aspects of the conflict so that no actor can brazenly claim superiority on all of them 
without considerable evidence and justification to stymie counter arguments. If this is 
done well, then it may be easy for an outside party to rank the actors according to 
their abilities and threats to solve their conflict. 
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6-6  SUDAN TRANSPORT STUDY BACKWARD PROCESS 
 
The Sudan, with a population of 18 million is the largest country in area in Africa 
(about a million square miles). It is irrigated by the White and Blue Niles, which 
together with considerable rain south of the capital Khartoum, where the two rivers 
meet give rise to one of the most agriculturally fertile vast lands left in the world. It is 
estimated that with nearly 120 million acres for growing food and 80 million acres for 
cattle feed the Sudan could feed several hundred million people. Thus, many funding 
agencies such as the World Bank and the oil rich countries have focused on its 
development. But exporting agricultural goods requires a wide transport network 
inside the country. Of course this network is not all required at once. Different parts 
need to be implemented at different times.  

The author was project director of a study (Saaty, 1977d) to develop a 
transport network projected for the late 1980’s in the Sudan. This study involves 
estimates of the economic rate of growth, done by econometric experts, and a canvas 
of known natural resources. Patterns of production and consumption of food and 
goods under assumed different rates of growth were also determined and used to 
estimate the movement patterns from the regions to the Sudan’s major export outlet 
on the Red Sea, Port Sudan. The projects of the network were then prioritized 
according to their contribution to the development of the regions through which they 
passed. They were considered separately for each region and their priorities were 
aggregated later. Now the regions in turn were prioritized according to their impact on 
the potential (feasible desirable) future scenarios of the Sudan. These scenarios 
represent the outcome of development that each of the different forces shaping the 
future is implicitly striving to produce in the Sudan. They were: the status quo, 
representing the present state of affairs extended into the future; agriculture for export 
which brings back capital for development, and for raising the standard of living in 
what is now one of the poorest countries in the world; balanced regional growth in 
which for political and social reasons the regions are developed in a balanced way 
rather than pushing agricultural development in some, thus raising their style and 
standard of life, while the others lag behind and may cause internal instability: and, 
finally, Arab African Interface scenario, in which the Sudan serves as an interface 
between Arab resources and influence and the African countries, thereby profiting 
from this role. These scenarios were developed in considerable depth in the study over 
a period of several months. The Sudan, after the British left, fought a major civil war 
between North and South to keep the South from forming a new state. The result of 
this 16-year war was considerable destruction of the South and the death of 1/2 
million people. The South does not play a major role in agricultural development but 
is a significant political entity of over 3 million, and also controls the White Nile, 
which originates in Uganda. Thus, development for purely economic reasons was 
considered inadequate for the overall future stability of the Sudan. Projects were 
assigned to connect the North with the South and with other regions in this vast 
country to help it stay intact. Intensive economic development in the North could 
offend the South about the distribution of resources. Thus the future is a composite 
outcome of these four scenarios. The people who participated in the prioritization 
were high level Sudanese officials, young professionals and several experts who did 
the Sudan Transport Study. The total study comprised 1,700 manuscript pages. Here 
we give the reader a very abbreviated version of the priority setting process. The 
results of the study have proved to be of great value for resource allocation. Nearly 6 
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billion dollars have been earmarked for the development of the Sudan and a good deal 
of this investment will go to transport as guided by the study. The fact that the 
projects were ranked by priority rather than by cost has made it possible to follow the 
study even in an era of severe worldwide inflation where dollar figures rapidly 
become meaningless. 

Pairwise comparison of the four scenarios according to their feasibility and 
desirability by 1985 (revision of the plan could separate these two criteria) gave rise 
to the matrix and its corresponding eigenvector of weights presented in Table 6-8. 

 
Table 6-8 Priorities of the scenarios 
 

  I II III IV 
Status quo 
Agricultural export 
Balanced regional growth 
Arab-African regional expansion 

I 
II 
III 
IV 
 

1 
7 
5 
3 

1/7 
1 

1/5 
1/5 

1/5 
5 
1 

1/5 

1/3 
5 
5 
1 

 
max = 4.39, C.I. = 0.13,   C.R. = 0.14  
 

The priorities of the scenarios in the order they are listed are 
 

(0.05, 0.61, 0.25, 0.09) 
 
The figure shows the perceived importance of each scenario relative to the other 
scenarios as well as the final priority ratings assigned to each. As can be seen, 
Scenario II dominates, with Scenario III next in importance. Since the future is likely 
to be not one or the other, but rather a composition of these scenarios with emphasis 
indicated by the priorities this information was used to construct a composite 
scenario of the Sudan of 1985. 

The importance of transport in the projected development implies a large 
investment in capital goods for the rail system, such as rolling stock and 
communication equipment. An extensive portion of the main line would have been 
double-tracked, and a new western spur line constructed. 

The road system would be well developed, extensively, and all-weather roads 
would connect the major cities, and the highway to Port Sudan would be in operation. 
Many feeder roads to the railway will have been built throughout the agricultural 
areas. In general, it would have been found possible to implement the transport 
objective of both Scenarios II and III as far as the highway system is concerned. 

The Nile waterway would have been improved and would be navigated by a 
modern fleet, backed up by excellent maintenance and docking facilities. The airway 
system would accommodate Scenario II, with an operating airfreight export service. 
Most air traffic and all international traffic would use the Khartoum airport. The 
secondary port at Suakin would have been opened and connected to the rail and road 
systems. 
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Priorities of Regions and Projects 
 
The Sudan has 12 regions (whose individual economic and geographic identity more 
or less justifies political division into distinct entities). The regions were compared 
pairwise in separate matrices according to their impact on each of the scenarios. They 
comprise the third hierarchy level. The resulting eigenvectors are used as the columns 
of a matrix which, when multiplied by the eigenvector of weights or priorities of the 
scenarios, gave a weighted average for the impact of the regions. Now the projects, 
the fourth level of the hierarchy, were compared pairwise in 12 matrices according to 
their impact on the regions to which they physically belonged. A project may belong 
to several regions, and this had to be considered. The resulting matrix of eigenvectors 
was again weighted by the vector of regional weights to obtain a measure of the 
overall impact of each project on the future. 

The priorities of the projects could have been done separately according to 
economic, social and political impacts. However, these attributes were considered 
jointly in the judgment debate. A number of refinements of the approach along these 
lines are possible for future revisions of the plan. 

The results of prioritization not only showed the relative importance of the 
regions (see Table 6-9) for possible investment purposes, but also those of the projects 
as to which of the three phases of implementation they should belong: the first phase 
to remove bottlenecks; the second phase to open up the agricultural areas and ship 
goods to the outside world; and the third phase to encourage balanced regional 
growth and transport between regions whose contribution to the Composite Scenario 
is not as visibly urgent as those of other regions, and, hence, will probably receive less 
of the overall investment. 
 
 
Table 6-9 Priority weights of regions (percent) 
 
Bahr 
El 
Ghazal 
3.14 

 
Blue 
Nile 
6.55 

 
 
Darfur 
5.37 

East 
Equa- 
toria 
1.70 

 
 
Gezira 
12.41 

 
 
Kassala 
5.25 

 
Khar- 
toum 
21.40 

 
Kordo- 
fan 
5.96 

 
North- 
ern 
2.94 

 
Red 
Sea 
22.54 

 
Upper 
Nile 
3.37 

West 
Equa- 
toria 
9.39 
 

 
Table 6-10 provides a sample of the recommendations for project 

implementation. A useful column, not included here, measures the cost-benefit of 
each project. It is obtained by dividing the priority of each project by its cost. The 
result is a ranking of the projects according to their overall feasibility and desirability. 

Implementation will proceed by focusing on the highest ranked projects 
constrained by the total amount of resources available for investment. 

Note that a project, such as a road, may be implemented with different grades 
of sophistication and the cost of each of these was estimated. It was now far easier to 
see what needed to be implemented and what could simply be improved or up graded, 
and what gaps had to be filled by new projects. 

We found that at a 7.3 percent growth rate, which we assumed first, 
everything seemed to be needed: many rail lines would have to be double-tracked and 
ballasted, roads proliferated everywhere, etc. The cost was so high that the Sudan 
would be committing its future for 100 years to pay for it, even if funds had been 
available, which they were not. 
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Table 6-10  The transportation development plan: Phase I 
(1974 Price Level in LS 1,000,000  1 LS = $2.50) (6 per cent growth rate) 
 

   Class 
GNP rates (%) 

      Main  
reason 

Committed 
 

 Cost 

 
 
Projects 

Dis-
tance 
(km) 

 
 
Priority 

4.3 
 
L 

 
 
H 

6.0 
 
L 

 
 
H 

7.3 
 
L 

 
 
H 

 
 
A 

Cost 
 
B 

 
 
C 

Recom-
mended 
class 

 
 
Flow 

 
 
Other 

(Financing 
in 
progress) 

 
 
Total 

 
Foreign 
currency 

 
Local 
currency 

 
Rail 
Port Sudan-Haiya 
Haiya-Athara 
Athara-Khartoum 
El Rabad-Babanusa 
Fleet (6% GNP) 
Maintenance facilities 
 

 
 
203 
271 
313 
363 
 
 

 
 

4,724 
3,455 
8,443 
1,005 

 

 
 

A 
B 
B 
B 

 
 

B 
B 
B 
B 

 
 

A 
B 
B 
B 

 
 

B 
B 
B 
B 
 
 

 
 

A 
A 
A 

 B 
 

 
 

B 
B 
B 
B 
 

 
 

9.10 
12.20 
14.10 
– 

  
 

7.10 
9.50 

11.00 
12.70 

 
 
– 
– 
– 
– 

 
 
A 
B 
B 
B 

 
 
X 
X 
X 
X 
 

   
 

9.10 
9.50 

11.00 
12.70 
40.90 

2.00 

 
 

4.55 
6.30 
7.30 
8.50 

40.90 
1.00 

 
 

4.55 
3.20 
3.70 
4.20 

– 
1.00 

Sub-total                85.20 68.55 16.65 
 
Road 
Wad Medani-Gedaref 
Gedaref-Kassala 
Kassala-Haiya-Port Sudan 
Wad Medani-Sennar 
Sennar-Kosti 
Sennar-Es Suki 
Ed Dubeibat-Kadugli 
Kadugli-Talodi 
Nyala-Kass-Zalingei 
Jebel Al Aulia-Kosti* 
 
 
Jubs-Nimuli 
Jubs-Amadi-Rumbek-Wau 
 
Fleet 
 

 
 

231 
218 
625 
100 
110 

47 
137 
100 
210 
300 

 
 

190 
725 

 
 

 
 

2,840 
0,872 
2,229 
0,526 
0,345 
0,546 
1,253 
0,266 
0,951 
1,567 

 
 

0,329 
0,494 

 
 

A 
A 
A 
A 
A 
A 
C 
– 
B 
B 
 
 

C 
C 

 
 

A 
A 
A 
A 
A 
A 
C 
– 
C 
B 
 
 

C 
C 

 
 

A 
A 
A 
A 
A 
A 

C 
 
B 
B 
 
 
C 
C 

 
 

A 
A 
A 
A 
A 
A 
C 
– 
C 
B 
 

C 
C 

 
 

A 
A 
A 
A 
A 
A 
B 
– 
B 
A 
 
 

B 
C 

 
 

A 
A 
A 
A 
A 
A 
C 
B 
C 
B 
 
 

– 

 
 

23.90 
14.20 
50.00 
14.90 

7.20 
7.00 

– 
– 
– 

44.70 
 
 
– 
– 

 
 

– 
– 
– 
– 
– 
– 

12.30 
6.60 

11.30 
29.70 

 
 

8.70 
– 

 
 
– 
– 
– 
– 
– 
– 
8.80 
– 
7.40 
– 
 
 
5.30 
20.30 

 
 
A 
A 
A 
A 
A 
A 
B 
– 
B 
– 
 
 
C 
C 

 
 
X 
X 
X 
X 
X 
X 
X 
 
X 
X 
 
 
X 
X 

 
 
 
 
 
 
 
 
 
 
 
High cost, 

alternative 
provided 

 
Together with 

alternative, 
high priority 

 
 
X 
X 
X 
X 
X 
 
X 

 
 

23.90 
14.20 
50.00 
14.90 

7.20 
7.00 

12.30 
 

11.30 
 
 
 

5.30 
20.30 

 
20.80 

 
 

16.70 
9.90 

35.00 
10.40 

5.00 
4.90 
7.40 

 
6.80 

 
 
 

1.60 
6.10 

 
20.80 

 
 

7.20 
4.30 

15.00 
4.50 
2.20 
2.10 
4.90 

 
4.50 

 
 
 

3.70 
14.20 

 

Sub-total                187.20 124.60 62.60 
 
* The priority rating of this project is based mostly on potential rather than present development. In view of its high cost relative to other road projects, it has been omitted. It is recommended that it be given urgent consideration 
in the following planning period. 
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We went back to the 4.3 percent, the present growth rate, and found that most 
of the current facilities with the prevailing level of efficiency would be crammed to 
their limit. Obviously, a compromise with a rational justification for growth had to be 
made somewhere between these two extremes. When we examined the 6 percent GNP 
growth rate, found feasible by the econometric analysis, it provided excellent 
guidelines for those projects which were found to be needed at 4.3 percent and 
remained invariant with high priority at 7.3 percent. These were mostly the projects 
we recommended for implementation. 
 
 
6-7  COMBINED FORWARD-BACKWARD PROCESS 
 
Electric Power Utility 
 
The following discussion focuses on planning for the future of an electric power utility. 
A forward-backward planning process is used to account for interactions among the 
various actors who have influence over the utility’s future, the objectives of each actor, 
possible future scenarios, problems inherent in achieving desired scenarios, and 
decision variables or policies under the control of the electric power utility. 
 
Forward process The forward process provides a description of the environment in 
which the electric utility must operate. It is illustrated in Fig. 6-4 together with the 
basic (non-composite) priorities of the factors represented in the hierarchy. 

We note that the objectives of the management of the utility are a high rate of 
return to protect capital market access, a high base load to insure system reliability, 
and low excess capacity to avoid high capital carrying costs for unused equipment. 
The other actors’ objectives are reasonably self-explanatory. The scope of this 
discussion precludes an in-depth description of the other objectives. 

The fourth level of the forward process hierarchy contains the possible future 
scenarios for the electric utility. The first is business as usual, which means that the 
utility would pursue the status quo, short-term policies implying no effort to plan for 
long run diversification or service reliability. The second scenario is to maintain and 
plan for moderate electric business growth while diversifying with retained earnings. 
The third scenario advocates minimizing electric business growth while pursuing an 
aggressive diversification policy. The difference between scenarios two and three is 
that the former maintains electric growth with moderate diversification while the latter 
de-emphasizes electric growth with aggressive diversification. The fourth scenario is 
to pursue and plan for high electric growth rates leading to an economy which relies 
heavily on electricity as an energy source. 

We note that the second and third scenarios have almost equal priority with 
the first and fourth getting relatively low values. A brief interpretation is that the most 
probable scenario outcome will be either scenario two or three, ceteris paribus. 
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Projected future 
of an 

electric utility 

Investors 
(0.22) 

Public utility 
commission 

(0.21) 

Stable  
return 
(0.60) 

Adequate- 
reliable supply 

(0.65) 

Low risk 
 

(0.40) 

Low cost 
 

(0.23) 

Financial 
stability of utility

(0.12) 

EPA 
 

(0.14) 

Clean 
air 

(0.63) 

Clean 
water 
(0.28) 

Technology 
forcing 
(0.09) 

DOE 
 

(0.04) 

Increase 
coal use 
(0.30) 

Adequate 
energy supply 

(0.55) 

Decrease 
energy imports 

(0.12) 

Environmental 
considerations  

(0.03) 

Consumer 
 

(0.03) 

Low rates 
 

(0.70) 

Service 
reliability 

(0.30) 

Fuel and 
material suppliers

(0.02) 

Increase 
sales 
(0.70) 

Long-term 
contracts 

(0.30) 

Management 
of the utility 

(0.35) 

High rate 
of return 

(0.73) 

High base 
load 

(0.19) 

Low excess 
capacity 
(0.08) 

Business as 
usual 

 
 

(0.076) 

Maintain growth 
of electric business, 

diversity with 
retained earning 

(0.367) 

Minimize growth  
of electric bus., 
diversity to max 
possible 

(0.369) 

Minimize growth  
of electric business, 
diversity to max. 
possible 

(0.369) 

Prepare for 
electrical 
economy 

 
(0.207) 

Level  I: Focus 

Level II: Actors 

Level IV:  
Scenarios 

Figure 6-4   Process hierarchy 

Level III: Objectives 
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We note that the second and third scenarios have almost equal priority with 
the first and fourth getting relatively low values. A brief interpretation is that the most 
probable scenario outcome will be either scenario two or three, ceteris paribus. 
 
Backward process Given the description of the environment and the insight gained 
from the forward process, the backward process is used as a prescriptive mechanism 
to determine which policies the electric utility should pursue to attain a “desired” 
scenario outcome. A different hierarchy is formulated as shown in Fig. 6-5.  

The first level is now the desired future of the electric utility. The second 
level contains the desired scenarios of the electric utility which coincidentally (it does 
not always happen this way) are the two probable outcomes from the forward process. 
The third level contains problems associated with achieving each of the desired 
scenarios. An elaboration of the problems is beyond the scope of this discussion. Most 
of them are self-explanatory. The fourth level contains the most influential actors in 
terms of their ability to affect the future of the electric utility. They were chosen on 
the basis of the weighting obtained in the forward process. In this case, all actors with 
a weight of 0.10 or less were not included. Therefore, only the management of the 
utility, the state PUC, the investors, and the EPA were considered. 

The fifth level is the basic reason for the backward process. This level 
contains the decision variables or policies under control of the utility. They include: 
(1) pursuit of stable returns to investors, (2) assurance of supply reliability to electric 
customers, (3) pursuit of a high rate of return on invested capital, (4) assuring low risk 
investments, and (5) an aggressive energy conservation campaign. 

The next step is to apply the AHP to this hierarchy in the same manner as we 
did in the forward process. The objective is to obtain a composite priority vector for 
the policies on the fifth level. These weights show which policies ought to be pursued 
by the utility most aggressively in order to achieve its most desired scenario outcome. 
The results of applying this procedure appear in Fig. 6-5. 

In this case the third scenario of de-emphasis on electric growth and 
aggressive diversification was chosen as the most desired outcome. The composite 
weights of the policies to be pursued are: investor stable return, 0.16; reliable supply, 
0.24; high rate of return, 0.26; low risk investment, 0.10; energy conservation, 0.24. 

An interpretation of the fifth level composite vector is of interest. In order to 
achieve the desired scenario, the electric utility must pursue policies that provide a 
reliable energy or electric supply, a high rate of return on capital investment, and 
energy conservation. Each of these exhibits weights which are almost equal. The other 
two policies have low priority weights and should be given weak emphasis. 

In the second forward process (Fig. 6-6) the actors whose priorities were 
below 0.05 in the first forward process have been removed. The relative importance of 
each actor also changes, since the situation now is that the electric utility is pursuing 
aggressive diversification. The following table shows that change. 
 
 Management PUC EPA Investors 
First forward  
Second forward 

0.38 
0.54 

0.26 
0.13 

0.15 
0.04 

0.23 
0.24 

 



 137

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is a shift in priority from the EPA and PUC to the management of the 

utility. 
The objectives of management to better reflect the pursuit of the desired 

scenario are determined from the backward process. The PUC objectives show the 
change of the utility management in reaching the desired scenario. Investors’ 
objectives also change for the same reasons. The priorities were then recalculated for 
the actors and their objectives in the second forward process shown in Fig. 6-6. 

Projected, desired 
future of the 

electric utility 

Management 
 

(0.54) 

High return 
 

(0.24) 

Reduce 
demand 

(conservation) 
(0.13) 

Reliability 
 

(0.13) 

Low excess 
capacity 

(0.04) 

 
Status quo 

 
 

(0.07) 

PUC 
 

(0.13) 

Adequate 
supply 
(0.10) 

 
Low cost 

 
(0.02) 

Financial 
stability 
(0.01) 

Maintain 
electricity 

diversity with 
retained earn 

(0.28) 

EPA 
 

(0.04) 

Clean air 
 

(0.03) 

Clean 
water 

 
(0.01) 

Technology 
forcing 
(0.00) 

Minimize 
electric 

aggressive 
diversification 

(0.50) 

Investors 
 

(0.29) 

Capital 
appreciation 

(0.17) 

High return 
on investment 

 
(0.12) 

 
Electric 

economy 
 

(0.15) 

Focus 

Objectives 

Scenarios 

Figure 6-6  Second forward process 
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Conclusion The implementation of the strategy suggested in the backward process 
produces results consistent with the objectives of the management when tested in the 
second forward process. The shift seems to be primarily between the two favored 
scenarios and the development of an electric economy. 

The exercise gives insight to the management as to the tradeoffs necessary to 
reach its desired goals. The process should be repeated to sharpen the strategy to be 
followed. 
 
 
Corporate Planning 
 
The purpose or this application, done for a large corporation with the participation of 
its planning staff, was to identify potential problem areas. The object was to decide 
which areas and which outside actors could be affected by corporate policies to bring 
about a more desired future than there would be without special directed effort. 

The planning was studied in terms of: 
 
(1) The projected future What will be the corporation’s future if the planning policies 

of the company remain as they are now and other, mainly external, actors and 
forces continue unchanged? 

(2) The desired future What changes in policies are needed to achieve a desired future 
as contrasted with the current projected future? 

 
For the Projected Future hierarchy, the levels represented the following in 

descending order of importance. 
 
(a) The actors who will affect the future of the corporation: evaluate their relative 

importance. 
(b) The policies/objectives of each important actor that will affect their planning 

behavior: evaluate their relative importance to the corresponding actor. 
(c) The alternative scenarios of corporate futures that are related to actor policies: 

evaluate the relative likelihood of each scenario. 
 

For the Desired Future hierarchy the identified levels were as follows. 
 
(a) The scenarios desired by the directors: evaluate their relative desirability. 
(b) The problems and obstacles that must be overcome to achieve one or more of the 

scenarios: evaluate the relative importance of each problem; 
(c) The actors who control the solution of each problem: assess the relative 

importance of these actors. 
(d) The policies/objectives of each actor which affect his behavior in regard to the 

problems: evaluate the relative importance of each policy/objective. 
(e) The counter-policies of the corporation to favorably influence the behavior of 

actors to solve the problems in order to maximize the achievement of the desired 
futures: evaluate the relative importance of each counter-policy. 

 
 



 139

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Projected 
future of 

the company 

Society 
 

0.01 

Distributors 
 

0.06 

Company 
executives 

0.31 

Consumers 
 

0.03 

Investors 
 

0.23 

Competitors 
 

0.05 

Government 
 

0.14 

Employees 
 

0.05 

Suppliers 
 

0.06 

Company 
success 

0.24 

Personal 
success 

0.15 

Low risk 
investment 

0.26 

High return 
on investment

0.13 

Political 
control 

0.11 

Shift to other 
products 

0.11 

Continuation 
scenario 

 
0.31 

Doomsday 
scenario 

 
0.05 

Basic 
business 

boom 
0.41 

International 
diversification 

scenario 
0.23 

Composite 
scenario 

Level I: 
Focus 

Level II: 
Actors 

Level III: 
Policies 

Level IV: 
Scenarios 

Figure 6-7 
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Results  The structure of the Projected Future is illustrated in Fig. 6-7. Each scenario 
is structured by identifying a group of relevant factors and assigning a value to each of 
them. The weight of each scenario is obtained based on its compatibility with the 
policies of the actors. The final weight of each scenario is calculated to be: 
Boom0.41: Continuation0.31; International Diversification0.23; Doomsday0.05. 

The structure of the Desired Future is illustrated in Fig. 6-8. The major 
policies and their final normalized weights were found to be: Investors/Low 
risk0.2.4; Government/Political control0.20; Competitors/Discourage competition 
0.15; Directors/Company success0.13; Investors/High return0.12; Competition/ 
Increase market share0.09; Directors/Personal success0.07.  

The projected future suggests a successful concentration by the company on 
the development of the business area that has made it successful in the past. Some 
efforts for international diversification will take place, but this will be driven more by 
the failure of domestic markets to develop rapidly than by the attractiveness of 
internationalization. The projected future indicates a distinct possibility that the 
domestic market will not provide an acceptable growth rate, primarily because of 
either supplier or government actions. 

The actors most significant to the company’s projected future are (in order of 
importance) the company’s own vice-presidents, the major financial investors in the 
company, the government, and raw material suppliers. Product consumers were not 
considered to be particularly significant in the projected future, implying that 
purchasing habits would not change unless there were new actions by the company 
itself. 

The policy and objectives of the key company managers were oriented first 
toward company success and then personal success, implying that the development of 
existing functional areas has a high priority as long as that leads to acceptable growth 
for the company as a whole. Financial investors were thought to be motivated 
primarily by risk minimization and secondarily by maximization of investment return. 
The government desired political control, development, and revenue in that order. 
Suppliers were assumed to seek profit return and were not particularly loyal to the 
customers who purchased their products; hence, risks of supply availability existed. 

International expansion was seen as a much more desirable future. The major 
problems relevant to achieving the desired future were: (1) competition in domestic 
and international markets, (2) the risk involved in investing in new products and 
markets, and (3) the political and social problems. For the desired future, the supply of 
raw material and organizational development were judged to be less significant than 
other problems. 

The most significant actors that would affect the outcome of the desired 
future are (in order of importance): the government, investors, competitors, and the 
company’s management. It is significant that the government appeared to be the key 
actor in creating desired change. Also, the company’s own management, which was 
the most influential actor in the forward process, is much less important here. 

 
Counter policies by company management were discussed briefly because of 

time limitations. However, the findings were that there is urgent need for (1) further 
knowledge, analysis, and understanding of the behavior of key external stakeholders, 
(2) a method for evaluating risk and returns on alternative new growth strategies, and 
(3) developing methods for exerting greater influence over external factors that have a 
major impact on those future courses which the company might desire to pursue. 
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Figure 6-8 
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6-8  CONFLICT ANALYSIS 
 
Health Care Management 
 
The prevailing mode of operations in health care systems has led to skyrocketing 
costs. The health care system has important differences from industrial systems. In 
industry, management obtains organizational support through concrete goals, formal 
authority, and task independence and performance measures. In health care systems, 
goals tend to be abstract, authority diffuse, interdependence low, and measures few 
and controversial. In short, the organizational problems in health care management 
result in a high degree of conflict between the various hospital tasks. Goals are often 
incompatible and the tasks are quite differentiated. Thus, there is a need for 
integrating mechanisms to reduce the conflict. One new proposal receiving much 
attention is the team concept that attempts to integrate hospital functions. Instead of 
individuals performing separate appointed tasks, patient care will be the result of 
interdependent tasks. 

Our hierarchy recognizes the high degree of conflict of interests between 
physicians, hospital administration, board of trustees, support personnel, and 
prospective patients. Two alternatives to the current health care management system 
are considered: the team concept and the status quo with administrative controls. 
These two scenarios will be evaluated to determine the relative preference of the 
actors and, thus their influence to achieve cost containment. Hence, by reducing 
internal conflict at a private health care institution, the hierarchical analysis should 
indicate (1) the relative power of the actors in the hospital to influence cost 
containment; (2) the effect of the two scenarios upon the objectives of the actors: (3) 
the nature and degree of conflicts between each group’s objectives: (4) which 
alternative is most likely to occur, and (5) the general recommendation to make to 
hospitals about the kind of decisions needed. 

To save space, we shall not describe the details of the elements in the 
hierarchy. They and their priorities appear in Fig. 6-9. However, it may be useful to 
elaborate on the bottom or fourth level. It represents two organizational policies. The 
status quo policy would involve no fundamental change to the current organizational 
arrangements. The cost containment mechanisms are purely administrative in nature, 
with possible changes only in restrictions on rate increases and budgets. The second 
policy represents a changed organizational concept in the hospital. The team concept 
is a new management policy including both economic and clinical dimensions of 
patient care management. In the process, physicians and support personnel, will be 
linked more closely to the hospital administration in the management task. The 
emphasis will be on justifying diagnostic and treatment methodologies in terms of 
their cost effectiveness. Being responsible for a more well defined population as well 
as a more well-defined (and circumscribed) amount of money, hospital administrators 
will need to know more about the economic implication of operating decisions. Those 
decisions will not be clinical decisions nor administrative decisions, but joint 
decisions of a health care team. 
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The results of the initial forward process show that the team concept does not 
exhibit a definite advantage over the status quo as a favored approach to contain costs 
in a health care institution. This is a consequence of the conflicting objectives 
between two participating groups of actors the physicians and the remaining four 
actors, resulting in a standoff between these two outcomes. The physicians favor 
remaining in de facto control of the hospital (and their objectives) via the status quo, 
while the other groups support change via the team concept, to gain more control in 
the hospital and, consequently, better cost containment. 

However, it is important to note that the question of salary objectives (and 
also position, in the case of the physicians), some 37 percent of the total overall 
weighting, was equally divided, indicating separation of individual salaries with 
respect to the improvement of cost containment. Thus, health care institution 
employee salaries will not change with the choice of organizational structure and is 
hence not a decisive factor. 

Modifications were made in the structure of the hierarchy to focus on the 
conflicting parties and try to produce a more conclusive result, i.e., obtain greater 
emphasis on one of the two outcomes although the team concept outcome would be 
more desirable for all. 

A backward process was applied, initially eliminating both the insignificantly 
weighted objectives (below an individual weighting of 0.01), and the objectives which 
were indifferent to an organizational change such as salaries. Then a second forward 
process was carried out to test the effect of these changes. 

The conclusions from the first forward process have resulted in focusing on 
seven basic objectives, common, in part, to all the actors. They represent a reduced 
grouping of the most germane and sensitive issues relative to the two opposing 
groups. Three of these objectives, the main concern of the physicians, are now also 
considered, in part, by all the actors. Because of the central position of the physician 
in the current structure of the hospital, all the actors consider as important the 
satisfaction of doctors and the patients with the doctor’s treatment. The remaining 
four objectives relate to the block of non-physicians. The justification for grouping 
them together in a common block is due to the similarity of the actors in their basic 
concerns in a hospital. For each of them, the team concept is a favored approach in 
attaining their highest weighted objectives. Thus, they have concentrated their original 
interests on these four areas to achieve their goals. The physicians, however, do not 
consider the team approach at all relevant to their role in the institution and, 
consequently, are not interested in any of the objectives presented by the physician 
block. 

The second forward process hierarchy (Fig. 6-10) includes the following seven 
objectives: (1) physicians: service satisfaction; (2) physicians: state of the art; (3) 
physicians: working environment; (4) other actors: fiscal health; (5) other actors: 
decision power: (6) other actors: service satisfaction; and (7) other actors: working 
environment. These were prioritized for each of the actors and N.C (i.e., not 
considered) was entered for the eigenvector coefficient wherever the corresponding 
objective does not apply to the actor. The overwhelming weight of the physicians and 
their relative resistance to change has resulted in a switch to a more favored view of 
the status quo in the second forward process. The physicians are not willing to change 
their objectives, and hence the team concept is not likely to emerge (creating better 
opportunity for cost containment).  
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The existing trends will continue unless the impasse is broken by a change in the basic 
structure of the institution which affects the relative weighting of the physicians, such 
as in the health management organizations. 

 
 

Table 6-11 
 
 
Level 1 

 
Level 2 

 
wt 

 
Level 3 

 
Comp.wt 

 
Level 4 

Comp.
wt 

Power of 
actors 

 
 

Actors  
 
 
Britain  
 
 
 
 
 
Allegiants  
 
 
 
 
 
Moderates  
 
 
 
 
I.R.A. 
 
 
 
Dublin  

 
 
 

0.45 
 
 
 
 
 

0.31 
 
 
 
 
 

0.07 
 
 
 
 

0.14 
 
 
 

0.03 

Actors objectives  
Sphere of influence 
 
Good relations 
Power sharing 
 
No link with Dublin 
Separate state 
 
No Irish Nationalists 

in Government 
British connection 
Economic well-being 
Power sharing 
 
Irish dimension 
Economic well-being 
 
Union Ulster-Ireland 
 
Drive out British 
 
Stability 
Union Ulster-Ireland 
 
Re-election 
British markets 

 
0.32* (0.36) 
 
0.09* (0.11) 
0.04 
 
0.02* (0.25) 
0.02 
 
 
0.06* (0.07) 
0.02 
0.02 
0.05* (0.07) 
 
0.01 
0.01 
 
0.02 
 
0.12* (0.15) 
 
0.01 
0.002 
 
0.01 
0.01 

Political structures 
a cross actors 

 
 
United Ireland 

Integrated parlia-
ment 

 
 
Assembly without  

a council from 
Dublin (minority 
participation) 

Assembly with  
 
a council from 
Dublin (minority 
participation) 

 
 
Dominion without  

a link to Dublin 
 
Dominion with  

 
a link to Dublin  

 
 
 
 

0.15 
 

0.15 
 
 
 
 
 

0.13 
 
 
 
 

0.16 
 
 
 

0.25 
 
 
 

0.16 

 
 
 
Conflict in Northern Ireland 
 
The AHP was applied to the conflict in Northern Ireland to yield a stable solution in 
the form of Dominion status. The hierarchy of the forward process has the levels and 
the corresponding weights shown in Table 6-11. The objectives were weighted with 
respect to their actors and the composite weights were obtained. Only high priority 
objectives marked by asterisks were retained for subsequent weighting. Dublin as an 
actor was eliminated since it had no contending high priority objective and the powers 
or the remaining parties were renormalized and used to weight the six surviving 
objectives. The composite weights were then renormalized as shown in parentheses. 
The political structures were compared with respect to the high priority objectives. It 
is seen that Dominion status has the widest overall acceptability. 

In order to apply the backward process, it is first necessary to find the desired 
outcome for each of the parties to the conflict, and to evaluate their reactions to all of 
the outcomes. The remainder of the analysis is tedious and the references should be 
consulted. (Alexander and Saaty, 1977.) 
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6-9 ENERGY EXAMPLES 
 
Optimum Choice of Coal Plants 
 
The problem of optimum choice of a Coal Using Energy System (CUESS) technology 
for a given community may be regarded as a hierarchy with three major criteria. One 
is concerned with energy resource utilization (ERU) efficiency, a second with 
environmental impacts, and a third one with economics. Each of these criteria 
involves a number of sub criteria shown in the charts (Figs. 6-116-13). (No 
breakdown is given under the economics criterion.) 

For example, under ERU efficiency we have four levels. The first level is 
concerned with season, topography, geography, etc. The second level is concerned 
with various energy requirements of a community such as heating and cooling, 
lighting, etc. The third level is concerned with the method of energy supply and the 
fourth with the type of plant which generates this energy. 

The chart for environmental effects is self-explanatory. 
 
 
Energy Storage Systems 
 
Four advanced energy storage systems were evaluated on the basis of six feasibility 
criteria, The storage systems are: S1compressed air storage; S2underground pumped 
hydro storage; S3electric batteries; S4hydrogen energy storage. 

 
 
 
 
 
 
 
 
 
 
The six criteria are: Ienvironmental feasibility; IIeconomic feasibility;  

IIIsocietal feasibility; IVsiting flexibility; Vconstruction lead time;  
VIcompatibility with power system. 

The comparison matrix of the six criteria and its eigenvector are: 
 

 I II III IV V VI Eigenvector 
I 

II 
III 
IV 
V 

VI 

1 
5 
1/2 
3 
2 
1/2 

1/5 
1 
1/7 
1/2 
1/3 
1/7 

2 
7 
1 
5 
2 
1 

1/3 
2 
1/5 
1 
1/2 
1/5 

1/2 
3 
1/2 
2 
1 
1/3 

2 
7 
1 
5 
3 
1 

0.09 
0.42 
0.05 
0.25 
0.14 
0.05 

max = 6.05,  C.I. = 0.01,   C.R. = 0.01 
 

We have the following ranking for the storage systems: S1 = 0.26; S2 = 0.14: 
S3 = 0.36; S4 = 0.24. This suggests that S3, the Electric Battery Storage System is the 
best of the four systems. 

Overall CUESS selecting 
desirability criteria

ERU 
efficiency 

Environmen
tal impact

Economics 

Figure 6-11 
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Estimating the Annual KWH Consumption of Home Appliances 
 
In this example, using 19 scale, a student attempted to estimate the relative kilowatt 
hours of electricity consumed by each of the following home appliances by comparing 
it with the others. He then compared the result with their normalized real values taken 
out of a standard reference on electric consumption. 
 
The matrix of pairwise comparison of estimated annual consumption 
   

 
Range 

 
Refrig- 
erator 

 
T.V. 
color 

 
Dish- 
washer 

 
T.V. 
b&w 

 
 
Iron 

 
 
Radio 

 
Hair- 
dryer 

Range 
Refrigerator 
T.V. color 
Dishwasher 
T.V. b& w 
Iron 
Radio 
Hairdryer 

1 
1/3 
1/6 
1/3 
1/7 
1/7 
1/9 
1/9 

3 
1 
1/4 
1/5 
1/5 
1/5 
1/7 
1/9 

6 
4 
1 
1 
2 
1/4 
1/4 
1/8 

3 
5 
1 
1 
1/2 
1/3 
1/9 
1/9 

7 
5 
1/2 
2 
1 
1/3 
1/3 
1/7 

7 
5 
4 
3 
3 
1 
1/4 
1/9 

9 
7 
4 
9 
3 
4 
1 
1/7 

9 
9 
8 
9 
7 
9 
7 
1 

 
max = 9.256               C.I. = 0.18               C.R. = 0.13   

   
The results are summarized as follows. 
 
 
Home appliances 

Weights using 
1-9 scale 

Normalized 
actual weights 

 
Difference 

Range 
Refrigerator 
T.V. color 
Dishwasher 
T.V. b&w 
Iron 
Radio 
Hairdryer 

0.362 
0.252 
0.088 
0.118 
0.083 
0.053 
0.030 
0.014 

0.348 
0.215 
0.148 
0.107 
0.101 
0.042 
0.025 
0.003 

0.014 
0.037 
0.060 
0.011 
0.018 
0.011 
0.005 
0.011 
 

 
RMS = 0.027,  MAD = 0.0045 

 
 
6-10  BEVERAGE CONTAINER PROBLEM 
 
Seven types of containers made of glass, bimetallic, and aluminum cans to be used by 
the beverage industry were evaluated based on four criteria: energy-consumption, 
cost, environmental waste, and customer convenience. 

The container types were: (1) refillable glass, no recycle (GRNR); (2) 
refillable glass, recycle (GRR); (3) throwaway glass, no recycle (GTNR); (4) 
throwaway glass, recycle (GTR); (5) bimetallic can, no recycle (BMNR); (6) 
aluminum can, no recycle (ALNR); (7) aluminum can, recycle (ALR). 
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The judgmental matrix of the pairwise comparison of the four objective factors 
was: 
 
  

Energy 
 
Cost 

Environmental 
Waste 

Customer 
Convenience 

Energy  
Cost  
Environmental 
waste  
Customer 
convenience 
 

1 
1/5 
 
1/3 
 
1/9 

5 
1 
 
4 
 
1/8 

3 
1/4 
 
1 
 
1/9 

9 
8 
 
9 
 
1 

max = 4.38,        C.I. = 0.13,            C.R. = 0.14  
 
The containers were then compared with respect to each criterion. The composite 
weight vector is given by 
 

GRNR 
0.318 31 

GRR 
0.318 31 

GTNR 
0.095 29 

 

GTR 
0.103 03 

BMNR 
0.106 83 

ALNR 
0.027 37 

ALR 
0.030 86 

 
It is interesting to note that the above results were consistent when, instead of 

the judgmental data of pairwise comparison, the actual data based on published 
literature pertaining to energy, cost, and environmental waste were used. The matrices 
for the fourth criterion customer convenience and the weighting matrix of the 
objective criterion were taken as in the above case. 

This yielded the following priorities: 
 

GRNR 
0.32 

GRR 
0.302 29 

GTNR 
0.093 35 

 

GTR 
0.093 18 

BMNR 
0.083 94 

ALNR 
0.052 24 

ALR 
0.055 0 

 
by way of validation, which is close to the previous vector. 

It needs to be pointed out that the quantitative factors had minimum and 
maximum values attached to them which served as indicators for the range of values 
of the 1-9 scale used together with an idea of the strength of utility. In any case, glass 
containers are favored in the analysis corresponding to their increased use in practice. 
 
 
6-11  APPLICAI'ION TO THE CHOICE OF A  
DEMOCRATIC NOMINEE 
 
An individual faced with the problem of judging a political candidate’s qualifications 
is often internally divided between assessing a number of attributes. One deeply 
affected by the Watergate scandals may place a premium on integrity and honesty. If 
unemployed, he is likely to weight more heavily a candidate’s domestic economic 
policies. If he is preoccupied with the security and welfare of an oppressed foreign 
people (take your choice!), international relations may get greater attention in his 
evaluation. But what if he is sensitive in some degree to all these considerations? It is 
obvious that he must decide how to balance these and others criteria. 
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Our first concern is the choice of issues relevant to candidacy. Candidates’ 
position on these issues form criteria for evaluation. The set of issues can be arbitrary, 
but some are undoubtedly more widely accepted as important to political outcomes 
than others. 

To delineate a realistic set of issues, we borrowed the expertise of a 
Democratic Congressman sufficiently sensitive to the criteria of his constituency. 
Eight issues emerged as shown in Table 6-12. 
 
 
Table 6-12  Political issues functioning as criteria for the choice of a 
democratic nominee 
 
Charisma 
 
Glamour 
 
Experience 
 
Economic policy  
Ability to manage international 

relations 
Personal integrity  
Past performance 
 
 
Honesty      

Personal leadership qualities inspiring enthusiasm 
and support 

Charm, allure, personal attractiveness; associations 
with other attractive people. 

Past office holding relevant to the Presidency; 
preparation for the Presidency  

Coherence and clarity of a national economic policy 
Coherence and clarity of foreign policy plus ability 

to deal with foreign leaders 
Quality of moral standards, trustworthiness 
Quality or role fulfillment independent of what the 

role was in previous public offices; public 
record 

Lawfulness in public life, law-abidingness 
 

These issues were compared pairwise according to their relative dominance 
in contributing to the overall success to Presidential candidacy. 

Integrity is most important with four almost equal runners-up: experience, 
past performance, economic policy, and honesty. Charisma, international relations and 
especially glamour appear comparably insignificant. The Congressman’s 
judgments had high consistency {consistency index 0.07, which is small for that order 
matrix). (See Saaty and Bennett, 1977a.) 

Several candidates were selected and compared with respect to these criteria 
to obtain their relative priority weights. 
 
 
6-12  PROMOTION AND TENURE QUESTION 
 
Each year across the country committees pour over the credentials of candidates for 
promotion and tenure. Here is the hierarchy which has been used in practice to 
provide a basis for judgment. Although the criteria used may be the same for assistant, 
associate, and full professorship, the judgments used should differ and become more 
demanding for a professor for significance and quality. One then obtains the overall 
priorities for the criteria as evaluated by the committee to set the standards. 

Now each candidate is evaluated by the same criteria and the resulting 
candidate’s eigenvector compared with the standards committee eigenvector obtained 
above. Root mean square deviation and MAD can be used to decide on how 
significant the difference is. (See Fig. 6-14.) 
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6-13  OPTIMUM LAND USE 
 
In an application to land use the following criteria were used to derive priorities for 
different pieces of land: wildlife, recreation, mining, economic development, timber. 
The land was first divided into clusters of several pieces in each and then these were 
disaggregated and compared. 
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Figure 6-14 
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PART 

THREE 
 

THEORY 
Reciprocal matrices—Feedback systems— 

Brief comparison with other work 
 
 
 
 
 
We now take up the formalism of the subject, defining and characterizing hierarchies and 
nonlinear networks, and investigating the properties of a reciprocal matrix of pairwise 
comparisons and the stability of its maximum eigenvalue and the corresponding 
eigenvector. Chapter 7 deals with Perron-Frobenius theory and the properties of consistent 
and of reciprocal matrices. In Chapter 8 we present Warfield’s method of structuring a 
system and then give our theory of priorities generalized to systems. In Chapter 9 we give a 
brief discussion of scaling and utility theory, including the work by Thurstone and the least 
squares procedure. Appendix One gives a brief elementary introduction to matrices. 
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CHAPTER 

SEVEN 
 

POSITIVE RECIPROCAL MATRICES AND THEIR  
EIGENVALUES 

 
 
 
 
7-1   INTRODUCTION 
 
In a previous chapter, we defined a priority function, and the priority vector w, in a 
hierarchy H. As the reader knows, the manner in which this priority is found is of central 
importance to our method. One begins with a matrix A of real numbers, representing the 
pairwise comparison of the importance of the elements of one level in H with respect to 
one element of the next higher level, finds the largest eigenvalue max, and determines the 
solution of the equation 
 

Aw = max w 
 

Therefore, our interest is guided to the study of square matrices A = (aij), such that 
 
 aij > 0 i, j = 1, …, n 
and 
  i, j = 1, …, n 
 
i.e., positive, reciprocal, square matrices. Of particular importance are those matrices 
which have not only the above properties, but are also consistent, which means that the 
following cardinal relationship holds: 
 
 aik = aijajk  i, j, k = 1,…, n 
 

In this chapter, we shall develop those parts of matrix theory, which prove the 
mathematical properties of our method. (See Appendix One for definitions.) 

We shall begin systematically by introducing first concepts first. This requires that 
we introduce the idea of an irreducible matrix. We also use this opportunity to put in the 
section other relevant material used elsewhere in the book. We then give the fundamental 
Perron–Frobenius theorem for nonnegative irreducible matrices which assures the 
existence of a unique solution to our eigenvalue problem. Since our reciprocal matrices are 
positive, we concentrate on positive matrices and the theorem of Perron and its proof. Next 
we prove that the eigenvector solution can be obtained as the limiting sum of the rows of 

ij
ji a

a
1

  
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Ak where A is primitive. This is then followed by a brief description of how the eigenvector 
is computed in practice. Following that is a discussion of the consistency of a reciprocal 
matrix in terms of its principal eigenvalue and its deviation from n (the order of A), the 
insensitivity of this eigenvalue to small perturbations in A, together with a study of 
consistent matrices. 

Next we turn our attention to characterizing reciprocal matrices and their right and 
left eigenvectors. We then study the important idea that small perturbations of the entries 
of a reciprocal matrix entail small perturbations in its principal eigenvector components. 
Also in that section we give a formula due to Vargas for the size of perturbation that each 
component of the eigenvector undergoes as a function of the perturbations of the matrix. 
 
 
7-2   IRREDUCIBLE MATRICES 
 
Our reciprocal pairwise comparison matrices have no zeros, and hence are always 
irreducible. We shall need the concept of irreducibility when we deal with a general system 
in Chap. 7. Since a certain amount of generality, i.e., dealing with irreducible instead of 
merely positive matrices is needed for our later work, we have stated and proved some of 
the theorems of this chapter under such a more relaxed assumption. 
 

Definition 7-1 A square matrix is irreducible (by permutations) if it cannot be 

decomposed into the form 








32

1 0

AA

A
 where A1 and A3 are square matrices and 0 is 

the zero matrix. Otherwise the matrix is said to be reducible. 
 

The following matrix is reducible 


















203

431

102

   

   A  

 
In the graph corresponding to this matrix, there is an arc from the first to the first 

and third vertices and similarly from the third to the first and third vertices, but one cannot 
go from there to the second vertex. From the second vertex one can go to all three vertices. 

Thus the first and third vertices form an irreducible component and the second is 
connected to them. It is obvious that by interchanging the second and third columns and 
second and third rows, the above matrix can be put in the form  
 




























32

1 0

341   

023   

012

AA

A
A  

where A1 and A3 are square matrices and where A1 is irreducible. 
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The following theorem gives the equivalence of the matrix property of 

irreducibility and the strong connectedness of the directed graph of the matrix. 
 

Theorem 7-1 An n  n complex matrix A is irreducible if and only if its directed 
graph D(A) is strongly connected. 

The proof of this theorem is rather obvious. Any power of a reducible 
matrix A is also reducible and hence has a block of zeros in the upper right corner. 
Therefore there is no path between the vertices corresponding to A1 and those 
corresponding to A2 and A3. Conversely, if the graph is not strongly connected, 
then there is a block of vertices which cannot be reached, and by appropriate 
permutations the corresponding matrix can be reduced to the above form. 
 
Theorem 7-2 A square matrix A is either irreducible or can be reduced by a 
permutation of indices to a block diagonal matrix of irreducible matrices, and 
other block matrices, having the normal form 

 

































mk mmkmm

kk k k k

k

AAAAA

AAAA

A

A

A















1,21

1,12,21,1

2

1

0

0000

0000

0000

 

 
At least one of the matrices with double subscript in each row, in which 

they appear, is nonzero. (See Gale, Gantmacher.) 
The proof of the theorem proceeds by assuming that if the matrix is 

reducible and is represented in the form given by the definition of a reducible 
matrix, then if either of its diagonal blocks is reducible it can again be represented 
in that form. In turn, if either of its diagonal blocks is reducible, it again is 
represented according to the standard form of a reducible matrix. After appropriate 
permutation of indices the result is a matrix all of whose elements above the 
diagonal blocks are zero; all the diagonal blocks are irreducible. In addition by a 
suitable permutation of indices all rows whose diagonal blocks are the only nonzero 
matrices may be arranged to fall as indicated above. 

Note that each of the “isolated” blocks A1,…, Ak is reachable, in the graph-
theoretic sense, from nodes corresponding to the double-indexed rows, but not 
conversely. Note also that all the double-indexed matrices in each column may be 
simply written as a row of blocks R1, R2, …, Rk, Q  where Q is, of course, no longer 
irreducible. The above form is unique to within permutations of the block indices. 
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We could just as well have ended with a transpose form in which the 
blocks R1, R2, …, Rk, Q form the last column of our matrix. Actually, it is this form 
that we shall be using later, as we look at our “stochastic” priority matrices. 

The process of constructing the normal form of a priority matrix is 
straightforward. One starts with any element and fills in its column the nonzero 
priority impacts (as component of an eigenvector) of all those elements which have 
an impact on it. Each of these is in turn entered in the adjacent columns, entering 
the nonzero priority impacts of all other elements on them. The process is 
continued until there are no new elements which impacts on this set. One must 
make sure of this, element by element. This yields a block for an irreducible set. 
The process is repeated by starting with another element for the next block, etc. 

 
 
7-3  EXISTENCE AND UNIQUENESS OF PRINCIPAL EIGENVECTORS 
 
We said earlier that the general existence and uniqueness theorem for the solution of a 
matrix eigenvalue problem for a nonnegative irreducible matrix (more general than a 
positive reciprocal matrix) would be given first. This is actually the theorem proved by 
Frobenius, who generalized Perron’s results for a positive matrix. This is then followed by 
a discussion and proof of Perron’s theorem. The proof of Frobenius’ theorem may be found 
in Gantmacher (1960). 
 

Theorem 7-3 (Perron-Frobenius) Let A  0 be irreducible. Then 
 

(1) A has a real positive simple (i.e., not multiple) eigenvalue max which is not 
exceeded in modulus by any other eigenvalue of A. (Some may be complex.) 

(2) The eigenvector of A corresponding to the eigenvalue max has positive 
components, and is essentially (to within multiplication by a constant) unique. 

(3) The number max (sometimes called the Perron root of A) is given by 
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COROLLARY  Let A  0 be irreducible, and let x  0 arbitrary. Then the Perron root 
of A satisfies 
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Theorem 7-4 (Perron} The statement of this theorem is the same as that above, 
except that A > 0 (consequently irreducible), and the modulus of max actually 
dominates the moduli of all other eigenvalues. 
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Let us proceed to prove several useful facts about positive n by n matrices 
(see Cogan, et al., 1959) which includes a sketch of the proof of Perron’s theorem. 
The order of these facts is as follows: Let A be a positive n by n matrix, and max its 
largest eigenvalue. 

 
(1) max is bounded from above by the maximum row sum, and from below by the 

minimum row sum. 
Thus if A is a stochastic matrix, i.e., if its row sums are unity, then max = 1. 

(2) For a stochastic matrix A  
evA  k

k



lim  

where v is a positive row vector, v = (v1, v2, …, vn), 



n

i
iv

1

1, and  

e = (1, 1, …, 1)T. 
(3) For a positive matrix A there is a positive constant , a nonzero row vector v, 

and a nonzero column vector w such that 

wv
A

  
k

k

k
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
lim  

 
(4)  is the largest eigenvalue of A. It is called the principal eigenvalue, and w and 

v are principal eigenvectors, unique to within a multiplicative constant. 
(5) w is orthogonal to all nonprincipal column eigenvectors, and v is orthogonal to 

all nonprincipal row eigenvectors. 
(6) If 1 is the largest eigenvalue of A, if i  j; i  j,  i,  j = 1, …, n, and if wi is 

the right eigenvector corresponding to i, then 
 

1lim cw
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kT

k

k
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When stated in this form, this important theorem is very easy to prove.  

As for its generalization 
(7) We generalize the proof to the case where A . 0, Ap > 0, for some integer p 1, 

without the remaining assumptions. 
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Theorem 7-5 

(1)  
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The inequality holds when the sums are not all the same 
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PROOF   The row sums of A are given by the components of Ae. Let the largest 
row sum be M and the smallest m. Then me  Ae  Me and equality holds only if  
m = M. 

From 
vA = maxv 

 
we have 

vAe = maxve 
vme  maxve  vMe 

 
If we divide by the positive number ve we have m  max  M and either 

equality holds if m = M. Similarly for column sums. We have the proof of (2) from  
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or from k
n

n  1  = trace Ak, let 1 = max then 
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as k  ,  1 [trace Ak]. The remainder of the proof will not be given here. 
 

Theorem 7-6 If A is a positive n by n matrix, each of whose rows sums to unity, 

then there is a positive row vector v, with  


n

i
iv

1
 = 1, such that 

m
lim  Am= ev  where 

e = (1, 1, …1)T.  
 
PROOF : Let yo be any column n-vector. Define ym = Amyo and let am and bm be the 
maximum and minimum components of ym, respectively. Let  be the minimum 
entry in A. Since ym+1 = Aym a component of ym+1 is obtained by multiplying a row 
of A with ym, and hence we have the following bounds on an arbitrary component c 
of  ym+1 

 
(1 – )bm+ am  c  bm + (1 – )am 

 
This also holds for the largest and smallest components of  ym+1 yielding 

 
am+1  bm + (1 – )am 

 
(thus am is monotone increasing) and 

 
(1 – )bm + am  bm+1 

 
(thus bm is monotone decreasing) or 

 
bm+1  – (1 – )bm – am 

 
and 

am+1 – bm+1  (1 – 2)(am – bm) 
 

from which by induction we have 
 

am  bm  (1 – 2)m(ao – bo) 
 

which tends to zero. Thus am and bm, tend to a common limit, and hence all the 
components approach this limit, i.e., 

m
lim ym = Ce with bo  C  ao. (The two 
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 Then ym is he ith column of Am, and as we have already established 

ym  (ci, …, ci)
T  vT since bo = 0,  ci > bo = 0. Thus .lim evAm
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Note that since all rows of Am sum to unity, it follows that 
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Theorem 7-7   If A is a positive n × n matrix then 
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A

k

k

k


 
lim  

 
where  is a positive constant, v a nonzero row vector, and w a nonzero column 
vector. 

SKETCH OF PROOF  Let S = {xx = (x1, …, xn),  xi  0, i = 1, …, n, 


n

i 1

x1 = 1; 

i.e. x = 1} and let Ax = y with x, y  S, A continuous, i.e. A(x+ y) = Ax as y  0. 
Then Brouwer’s fixed point theorem asserts that there is an xo  S such that Axo = 
xo. Since a matrix defines a linear transformation, i.e., A(x+ y) = Ax + Ay, y  0 
implies Ay  0 and A is continuous.  

Consider the transformation 
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This transformation is positive. Since fx = 1, x has a nonzero component and hence 
Ax > 0 and fAx > 0. Now 
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and T transforms S into S. Since A is continuous by Brouwer’s fixed point theorem  
(a continuous mapping of the closed unit n-sphere into itself has a fixed point), 
there is a fixed point w such that 
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Since the left side is positive, w is positive and f (Aw) > 0. Thus Aw = w,  > 0, w 
> 0. Finally, let D be a diagonal matrix with dii = wi and dij = 0, i  j. Since w > 0, 
D has an inverse D-1, again diagonal, with diagonal entries 1/wi. Thus w = De and 
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It follows that the row sums of [D-1(1/)AD] are all equal to unity. From the theory 
of stochastic matrices, there is a row vector v* such that, 
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(i.e., the rows of the limiting matrix are all the same) from which we have 
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Theorem 7-8  The vectors v and w are eigenvectors of A, both with eigenvalue . 

 
PROOF: 
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from which we have Awv = wv and Awve = wve and, since ve is a constant, Aw = 
w. Similarly vA = v. 

 
Corollary The vectors v and w are positive. 

 
PROOF  From Aw = w we have (1/) Aw = w. Since  is positive and A is positive 
and w is nonnegative (with some nonzero components) every component to the left 
is positive and hence w is positive; similarly for v. 

 
Theorem 7-9  All eigenvectors corresponding to the eigenvalue  are constant 
multiples of w and v. 

 
PROOF   If  Au = u. then Aku = ku, and (1/)k Aku = u for all k. Letting k   we 
have wvu = u. Since vu is some number , we have w = u. Similarly for row 
vectors. 

 
Theorem 7-10  The modulus of any other eigenvalue h of A satisfies the inequality  
h < . 
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PROOF   If  Au = hu, then Aku = hku, and (1/)kAku = (h/)ku. Taking the limit as  
k  , we have 
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wvu
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and the right side must exist, which can only happen for h =  or h  , yielding a 
zero limiting value. 

The eigenvalue  is the principal eigenvalue of A which we denote by max 
and v and w are the principal eigenvectors of A. 

 
Corollary  The principal row and column eigenvectors v (and w) are orthogonal to 
all nonprincipal column and row eigenvectors of A. 

 
PROOF  Consider the result  wvu = 0 in the proof of the previous theorem. Since  
w > 0 we have vu = 0, and therefore v is orthogonal to the column vector u. A 
similar argument can be used to show that w is orthogonal to all nonprincipal row 
eigenvectors of A. 

 
Corollary  vw = 1 

 
PROOF  In the proof of the theorem, let u = w then h =  and wvw = w. Since vw is 
a number must have vw = 1. 

 
REMARK  vw is the trace of the matrix wv, and hence this trace is always equal to 
unity. 

 

REMARK  The system 
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= bi, i = 1, …, n where aij  0, aii > 0 has a non-

negative solution xj  0,  j = 1, …, n if the upper left-corner principal minors of A, 
A = (aij) are positive, i.e., if 
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Theorem 7-11  (Wielandt) If A is a nonnegative irreducible matrix, then the value 
of max increases as any element aij increases. 
 
PROOF  Let A be nonnegative, and define B () = I – A, where  is a real valued 
parameter (Nikaido, 1970). Let M be the set of all  for which the system B() has 
a nonnegative solution, i.e., the inverse matrix (I – A)–1  exists and is nonnegative. 
The set M is nonempty for x > 0 and is such that for sufficiently large , x > Ax, 
i,e., x – Ax > 0 and this condition assures the existence of a nonnegative solution, 
and is equivalent to the above principal minor condition. Since M depends on A we 
denote it by M (A). 

Let A  A  0. Then M (A)  M(A"). To see this, note that if   M(A) 
then (I – A) x > 0 for some x  0 and since I – A"   I – A, (I – A") > 0 for the 
same x and hence the system with A has a nonnegative solution and   M(A"). 
Now the maximum eigenvalue max of A > 0 is the 

 M
inf  for which (I – A)–1 

exists, i.e., it is the first value for which I – A = 0 and hence all other eigenvalues 
must be no greater than max. In any case we have 

 
max (A) = 

)'(
inf

AM
  max  (A") 

 
Thus max is a monotone function of A. 

 
We now show the significant result that the eigenvector corresponding to max is the 

normalized row sums of the limiting matrix of just the kth power Ak of A, and not of the 
sums of all powers of A. 
 

Theorem 7-12   

1lim cw
eAe

eA
kT

k

k



 

 
where A > 0, w1 is its principal eigenvector corresponding to the maximum 
eigenvalue 1, i  j for all i and j, and wi is the right eigenvector corresponding to 
i and c is a constant. 

 
PROOF   e = a1w1 + … + an wn where ai, i = 1, … , n are constants. 
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Since w1 > 0, b1  0. The theorem follows. 
Next we generalize this theorem. 

 
Definition 7-2 A nonnegative irreducible matrix A is primitive if and only if there 
is an integer m  1 such that Am > 0. Otherwise it is called imprimitive. The graph 
of a primitive matrix has a path of length  m between any two vertices. 

 
From the work of Frobenius (1912), Perron (1907), and Wielandt (1950) we have 

that a nonnegative irreducible matrix A is primitive, if and only if A has unique 
characteristic root of maximum modulus, and if this root has multiplicity l. 
 

Theorem 7-13  For a primitive matrix A 
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where c is a constant and w is the eigenvector corresponding to max  1 

 
PROOF Assume that A > 0. Consider the Jordan canonical form B of A. Then for 
some nonsingular matrix N 
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where Bi, i = 2,..., r is the mi × mi  Jordan block form defined by 
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where 2, …, r, are distinct eigenvalues with multiplicities m2, … , mr, 

respectively, and 1 + 
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= n, the dimension of A. We choose the appropriate 

basis vectors for each subspace of the Jordan form 
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Note that 

Bi = iI+u 
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where 
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where uk is the zero matrix if k  n, and if k < n the diagonal of ones in u shifts 
downwards by one for each additional power of  u. For example 

 



























001...00

000...10

000...01

000...00

000...00

2u

 
 

Now let 
 

21

21,2
1

21,22,211

1

1
2 1 01

111

313122222222212111

...

......

......

cpp

pppcA

VkaVaeA

VaVaVaVaVaVae

rr
k
rrk

k

k

k
k

kk

ij
k
i

j

r

i

m

j

j

ji
kk

rrmrrmmm

r



















  







 

 
where the pij are polynomials in k and c1, c2 are constants independent of k. 

 

The expression 
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the limit of which as k   is (a1/c1)V1, since 1 is the unique largest eigenvalue. 

A typical term (i > 2) 
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would approach 0 as k   (since 1 dominates all other ’s). On putting  
e = (a1/c1) and V1  = w, we have the theorem proved for A > 0. 

 
REMARK   Note that c = 0 if and only if a1 = 0. We can show that al   0 whenever 
all aij in the expansion of e and all Vi are real and positive. We observe that a small 
perturbation in e would make a1  0, and the result remains the same. 

Now to prove the theorem for A  0 we note that because aii > 0 there exists 
a positive integer m such that Am > 0 (i.e., by going around loops it is possible to 
eventually obtain paths of any desired length between an arbitrary pair of vertices 
of the corresponding graph). The above proof applies to Am and its largest 
eigenvector w(Am). Indeed, since A is a bounded linear operator (and therefore 
continuous on En En) we have 
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imk

imk
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It is trivial to show that w (Am) is the desired nonnegative eigenvector of A. 
 

This completes the proof. 
 

REMARK  The following nonnegative matrix is irreducible (its graph is strongly 
connected since every pair of vertices has a path connecting them). 

 


















001

400

020

A

 
 

This matrix does not satisfy the theorem because it is imprimitive as it has 2 as the 
only eigenvalue of multiplicity 3. To see this, note the following 
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Ae = (2, 4, 1)T; normalizing yields x1 = ( 7
1

,7
4

,7
2 )T; Ax1 = ( 7

2
,7

4
,7

8 )T; 

normalizing yields x2 = ( 7
1

7
2

7
4 ,, )T; Ax2 = ( 7

4
7
4

7
4 ,, )T normalizing yields x3 = 

( 3
1

3
1

3
1 ,, )T; Ax3 = ( 3

1
3
4

3
2 ,, )T and normalizing yields x4 = ( 7

1
7
4

7
2 ,, )T which is the same 

as x1 thus cycling without convergence. 
 
 
7-4  COMPUTATION OF THE EIGENVECTOR 
 
The actual computation of the principal eigenvector is based on the last theorem above. It 
says that the normalized row sums of the limiting power of a primitive matrix (and hence 
also for a positive matrix) gives the desired eigenvector. Thus a short computational way to 
obtain this vector is to raise the matrix to powers that are successively squared each time. 
The row sums are calculated and normalized. The computer is instructed to stop when the 
difference between these sums in two consecutive calculations is smaller than a prescribed 
value. 
 
 
7-5  CONSISTENCY 
 
Reciprocal nonnegative matrices may have complex eigenvalues. Hence, they have no 
simple generic characterization. However, we note that since the maximum eigenvalue lies 
between the largest and the smallest row sums, a matrix whose columns are identical has 
an eigenvalue which is equal to the sum of any of its columns. Also we shall see that a 
small perturbation leaves the maximum eigenvalue close to its value, and that the 
remaining eigenvalues are perturbed away from zero, and their sum is real. 

The choice of perturbation most appropriate for describing the effect of 
inconsistency on the eigenvector depends on what is thought to be the psychological 
process involved in pairwise comparisons of a set of data. We assume that all perturbations 
of interest can be reduced to the general form aij = (wi/wj)ij. Consistency occurs when  
ij = 1.  For example 
 









 ji
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j
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i
ij
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w

w

w

w

w

w
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Let us now develop a few elementary but essential results about consistent 

matrices. We start with the relation 
 





n

j i

j
ij w

w
a

1
max  

which is the ith component of Aw = maxw, and define 
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



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
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and since 
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we find that 
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and therefore 
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Substituting, aij = (wi/wj)ij, ij > 0 we arrive at the equation 
 

   
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We observe that as ij 1, i.e., as consistency is approached,   0. Also,   is convex in 
the ij, since ij + 1/ij is convex (and has its minimum at ij = 1), and since the sum of 
convex functions is convex. Thus,  is small or large depending on ij being near to or far 
from unity, respectively (i.e., near to or far from consistency).  Finally, if  we  write  
i j = l + ij with ij > 1 we have 
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Theorem 7-14   max  n. 
 

PROOF 


 





nji ij

ij

nnn

n

1

2

max

1)1(

1

1 


 

 
which is  0, since aij = (wi/wj)(l + ij) with ij > 1. 

 
 

Theorem 7-15  A positive, reciprocal matrix is consistent if and only if max = n. 
 

PROOF  If A is consistent then ij = 0 and max = n. 
 

Conversely, using the result above, we conclude from  max = n that ij = 0 for each 
choice of i and j, and hence, that A is consistent.  

As we saw, we wish  to be near zero, or, max to be near to its lower bound n, and 
thus to approach consistency. It is interesting to see that (max – n/n – 1) is related to the 
statistical root mean square error. Indeed, let us assume that ij < 1 (and hence that 
( ijij  1/3 ) is small compared with 2

ij ). This is a reasonable assumption for an unbiased 

judge, who is limited by the “natural” greatest lower bound 1 on ij (since aij must be 
greater than zero), and who would tend to estimate symmetrically about zero in the interval 
(1,1). Now,   0 as ij  0. Multiplication by 2 gives the variance of the ij. Thus, 2 is 
this variance. 

Small perturbations of the entries in a positive reciprocal matrix imply small 
perturbations in the eigenvalues from their original value. This observation is not true for 
general positive matrices. We prove this fact for max. 
 
 

Theorem 7-16   Let  = ij
ji


,
max  then 
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nji
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22
max 2

11   

 
 

PROOF   Obvious 
Thus if the perturbation (or judgmental error) is small and the number of 

elements being compared is also small (e.g., less than 10) then the departure of max 
from n is also small. Again we note that to remain near consistency we need to keep 
n small. For example,  = 0.1, n = 7 give max  n < 0.04 and  = 0.9, n = 7 give 
max – n < 2.43. 
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REMARK  The nonnegative matrix A = (aij) with ai, i+1 = 1, aij = 0 otherwise, has 
all its eigenvalues zero, but the same matrix with an1 replaced by , where  > 0 is 
small, has the maximum eigenvalue max = 1/n which tends to unity with increasing 
n. Thus, although max changes continuously with the coefficient , its value 
becomes large even for small  (communicated to me by Alan Laub of MIT). 

 
Vargas (1978) has observed that from aijajk = aik, we have, on using the reciprocal 

property aji = 1/aij, that aijajkaki = 1. Thus consistency for a reciprocal matrix means that all 
cycles of length three have unit intensity. 
 

Assuming ij < 1, and considering triangular cycles we have 
 

aijajkaki = (1 + ij) (l + jk) (1 – ik)  1 + ij + jk - ik 
 

and, since max = 


n

j
ij

1

 , we have 

max
2

,,

 naaa
kji

kijkji

 
 

For i  j, j  k, i  k, this sum becomes n2(maxn) + n(n1)(n2), since by putting 
app = 1,  apq = aqp

1 we have n2 + 2n(n – 1) terms whose value is unity. Averaging over the 

number  of terms,  i.e., n(n – 1)(n – 2), the result  is (n/n – 2) (max – n/n  1)+ 1 valid for  
n  3. In any case it is max  n that is of interest to us as it also appears in these global 
considerations of consistency. 

Suppose now, that we wish to develop a test of a hypothesis of consistency. Perfect 
consistency may be stated as the null hypothesis:  
 

H0 :  = 0 
 
and we test it against its one-sided alternative. 

H1 :  > 0 
 
The appropriate test statistic is 
 

1
max

~





n

n
m


 

 

where max

~

 is the maximum observed eigenvalue of the matrix whose elements, aij, contain 
random error. Developing a statistical measure for consistency requires finding the 
distribution of the statistic m. While its specific form is beyond the scope of this chapter, 
we observe that m follows a nonnegative probability distribution whose variance is twice 
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its mean x , and appears to be quite similar to the Chi-square distribution, if we assume 
that all ij are N (0, 2) on (1, 1). 

For our purpose, without knowing the distribution, we use the conventional ratio 

( )2/()( xx o ) with o = 0, i.e., we use 2/x  in a qualitative test to confirm the null 

hypothesis when the test statistic is, say, 1. Thus when x > 2, it is possible that 
inconsistency is indicated. 

A better method for testing the statistic m is the one we have been using by 
comparing C.I. with R.I. 
 
REMARK  Note that for A =(aij), W = (wi/wj), we have 

(A – W)w = (max  n)w 
 
which shows that the approximation to (aij) by (wi/wj) is the better, the closer max is to n. 

Returning to the representation 
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w

w
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we find that 
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j
ijij w

w
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Thus replacing the aij  by  wi/wj yields 2

ij  = 0, and hence decreases the value  of    

2 (max – n)/(n – 1). 
Thus, whenever ij < 1, approximating any aij by wi/wj will bring us closer to 

consistency. (See the discussion of least squares given later.) 
 

Theorem 7-17  If a positive matrix A is consistent, then each row is a positive 
multiple of any given row. 

 
PROOF  Without loss of generality, let us assume that each row is a positive 
multiple of the ith row. The relation ajk = aik/aij implies that by fixing j and putting 
k = 1, 2, ..., n the jth row is equal to the ith row, multiplied by the positive constant 
(1/aij). 

 
REMARK  Obviously the converse of this theorem is false. A matrix of unit rank 
need not be consistent. For example, the following matrix 
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



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a21 is not equal to a11/a12. 
Thus, a consistent matrix has the following general form 
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with aii = 1. 
Since the matrix A = (wi/wj) has the form of the transpose of the above matrix, it is 
consistent. 

 
Theorem 7-18   If A is positive and consistent, then aii = 1 and aij = 1/aji 

 
PROOF   The definition implies that aii = aiiaii, and hence aii = 1 for all i. Also, aii = 
aijaji implies aij = aii/aji = 1/aji. 

 
Theorem 7-19  A positive matrix A is consistent if and only if it has unit rank and 
its principal diagonal entries are equal to unity. 

 
PROOF   If A is consistent than aii = 1. Also 

)(
1

1
11

1
j

ii

j
ij a

aa

a
a 

 
 

and the ith row is l/a1i times the first row and hence the rank of A is unity. 
Conversely, if the rank of A is unity and aii = 1 for all i, then each row is a constant 
multiple of the first row, i.e., 

 
aij = cia1j, ajk = cja1k, aik = cia1k, ajj = cja1j 

aijajk = cicja1ja1k = cicja1j ikjj
i

ik aac
c

a
1 = ajjaik = aik 

and A is consistent. 
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In line with our earlier discussion of graphs we have the following. 

 
Definition 7-3 The intensity of judgments associated with a path from i to j called 
the path intensity is equal to the products of the intensities associated with the arcs 
of that path. 

 
The following theorem may help remove some doubts one may have regarding 

path intensities and consistency. Recall that a spanning tree on n vertices has n 1 edges. It 
is a connected graph which includes all the vertices and has no cycles. Thus there is a 
unique path between any pair of vertices. 
 

Theorem 7-20  A necessary and sufficient condition that there is a unique positive 
consistent matrix derived by path intensities from an arbitrary assignment of 
pairwise comparison judgments and their reciprocals to activities is that the 
activities (as vertices) and their connecting judgments (as arcs) form a spanning 
tree. 

 
PROOF  Necessity If the activities form a cycle there is a non-unique representation 
of the path between two vertices in the cycle yielding two different values for the 
same entry. All activities must be represented in the tree otherwise judgments 
would have to be provided to connect isolated activities, and their judgments would 
be arbitrary. This would violate the uniqueness of the matrix. 

 
Sufficiency. For each arc of the spanning tree we use the unique path intensity to 
compose the intensities between activities i and j. This defines a matrix A = (aij). 

To prove that A is consistent, we consider any row, e.g., the ith. For any pair 
of vertices j and k we must show that ajk defined by the product of arcs in 

   
 
 
 
 
 
 
Figure 7-1 
 
 

the path jk is given by aik/aij where aik and aij are the corresponding products of arc 
intensities on paths connecting i to k and i to j. 

 
There are two cases to consider. 

(1) i lies on the path between j and k. In that case ajk = ajkaik = aik/aij.  
(2) i does not lie between j and k, then 

i 

k 

m j 
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(a) i, j and k form a path in which case the path defining ajk is given by aik/aij if j is 

between i and k and by the reciprocal of aij/aik i.e. aik/aij, if k is between i and j 
since the path must go from j to k and not from k toj. 

(b) i, j, k form a fork at m (see Fig. 7-1). Then ajk = ajmamk = ajmamiaimamk = ajiaik = 
aik/aij 

 
 

Theorem 7-21  If A is consistent then Ak = nk-1A. 
 

PROOF  From Sylvester’s theorem we have 
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This gives the same result for f (A) = Ak as the modified form (for multiple 
eigenvalues) when the multiple eigenvalue is zero. We obtain on putting f (A) = A 
first and f (A) = Ak second, both with 1 = n, j = 0,  j  1: 

  
An-1 = nn–2A,      Ak = nk–n–1  An–1 

 
respectively.  Substituting  for An–1 from  the  first result into the second  gives   
Ak = nk–1A. 

 
Theorem 7-22  Any column of the matrix A = (wi/wj) is a solution of the 
eigenvalue problem Aw = nw, w = (w1, …, wn). 

 
PROOF  Since any column of the matrix is given by 
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w

w

w

w

w
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,...,, 21

 
 

it is simply a constant multiple of w and hence is a solution of the problem. 
 

The last theorem implies the one preceding it, since, if we denote the columns of A 
by (a1, a2, ... an), then A  A = (a1, a2, ...., an)

2 = (nal, na2, .... nan) = nA. 
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Theorem 7-23  Any row of the matrix A = (wi/wj) is a solution of vA = nv.  

 
PROOF  Obvious. 

 
Corollary  The right and left eigenvectors, w and v, have reciprocal entries to 
within a constant multiplier. (They are what we call dual vectors.) 

Let us define the norm of the matrix A by A  eT Ae (i.e., it is the sum of 

all entries of A), where as in page 176, 
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We know that for a primitive matrix A 

 

  max/lim cwAeA kk

k


  
 

where c is a constant and wmax is the normalized principal eigenvector of A. The 
following is a simplified version of this theorem for a consistent matrix. 

 
Theorem 7-24  If A is a positive consistent n by n matrix then Ae = Cw where C > 
0 is a constant, and w satisfies Aw = nw. 

 
PROOF  The vector Ae is the sum of the rows of A, and it is, obviously, a constant 
multiple of any column. It is therefore a solution of the eigenvalue problem. 

 
ALTERNATE PROOF  It is easy to show that “A has unit rank” if and only if there 
exist vectors x and y such that A =  xyT. Hence 

 
Aw = (y, w) x = nw,         (y, w) = y1 w1 + …  + ynwn 

 
and hence 

 

Ae = (y, e) x = (y, e) 
),( wy

n
w = Cw 
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Corollary 1   If A = wi/wj then Cwi = wi/ 


n

i 1

wi 

Corollary 2                                                                      
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The following theorem shows that, in the case of consistent matrices, the 

eigenvector components vary monotonically with changes in single entries. 
 

Theorem 7-25  (Monotonicity Theorem)  Let A = (aij) be a positive consistent 
matrix with principal eigenvector w = (w1, ...., wn). Replace a single entry axy by axy 
+  > 0 and, using row x, construct a new consistent matrix A* = (a*

ij). Let w* = 
),,( **

1 nww   be the principal eigenvector of A*. Then xx ww * . 

 
PROOF  Since both A and A* are consistent, any normalized column gives the 
principal eigenvector. Consider the column containing 1/axy in A, and the 
corresponding column containing 1/axy+  in A*. The two columns are identical, 
except for this single entry. However, the sum of the column entries in A* is less 
than the sum of the column entries in A. Thus, normalizing by this column yields a 
larger ratio for all those entries that remain the same in both matrices. This is 
particularly true for *

xw , therefore *
xw  > wx. 

 
Later we shall generalize this theorem to reciprocal matrices of order 2, 3, and 4. 
 

Theorem 7-26  If A is a positive, consistent matrix and A’ is obtained from A by 
deleting the ith row and ith column, then A’ is consistent and its corresponding 
eigenvector is obtained from that of A by putting wi = 0, and normalizing the 
components. 

 
PROOF  Given any row of A, e.g., the first, we have aij = a1j/a1i, j = 1, …, n, and 
the ith row of A depends on the ith column entry in its first row. A similar 
consequence follows from ajk = a1k/a1j. Thus, no entry in A’ depends on the ith row 
or ith column of A and hence A’ is also consistent. Since their entries coincide 
except in the ith row and ith column of A and since the solution of an eigenvalue 
problem with a consistent matrix is obtained from any normalized column, the 
theorem follows. 

 
REMARK In the general case, if A = (aij) is a matrix constructed from pairwise 
comparisons, and A’ (a’ij) with a’ij = aij,  i, j = 1, …, n, i  k, j  k, a’ij = 0, i = k or j 
= k, and if the normalized eigenvector solutions of Aw = maxw and A’w’ = max w' 
are w and w', respectively, then w’k = 0, but w’/w’   w/w, for all  and . In 
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other words, leaving out one activity or a pairwise comparison matrix does not 
distribute its weight proportionately among the other activities. 

 
The following theorem shows that seeking order type of relationship between aij 

and wi/wj involves all of A, and its powers, in a complicated fashion. 
 

Theorem 7-27  For a primitive matrix A we have 
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holds. (A pth subscript on a vector indicates use of its pth entry.) 

 
 

PROOF   In a typical case 
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Thus, the theorem is true whenever the following inequality holds 
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Using the theorem on the limit of a primitive matrix we replace every w, by 
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yielding the proof. 

 
We now turn to an important extension of the previous results. Let us assume that 

our mind works, in fact, with pairwise comparisons, but that the aij are not estimates of 
wi/wj but of some function of the latter, aij(wi/wj). For example, Stevens (see Churchman 
and Ratoosh, 1959) observed that aij as perceived for prothetic phenomena (the process of 
adding excitation to excitation) takes the form (wi/wj)

a where a lies somewhere between 0.3 
(in the case of loudness estimation) and 4 (in the case of electric shock estimation). Others 
are: brightness. 0.33 to 0.50, length 1.1, duration 1.15, numerousness 1.34, heaviness 1.45, 
and velocity 1.77. For metathetic phenomena (the process of substituting excitation for 
excitation), Stevens points out that the power law need not apply, i.e., that a = 1 for 
thought processes. 

These observations indicate that it is of interest to study the general form of the 
solution gi(wi), i = 1,..., n, of an eigenvalue problem, where we assume a consistency 
condition of the form 
 

f(aij)f(ajk) = f(aik) 
 
for which the matrix also has unit rank. Our main result is as follows. 
 

Theorem 7-28  (Eigenvalue Power Law) If the matrix A = [aij(wi/wj)] of order n 
satisfies the generalized consistency condition, then the eigenvalue problem 
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has the eigenvector solution  )(,),(),,( 111 nn

a
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a wgwgww   . 
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PROOF   The relation 

 
aij(wi/wj) = gi(wi)/gj(wj) 

 
is satisfied by the solution gi(wi), i = 1,…, n, of the eigenvalue problem. If we 
substitute it into the consistency condition, we have  

 
f [gi(wi)/gj(wj)]  f[gj(wj)/gk(wk)] = f [gi(wi)/gk(wk) · gj(wj)/gj(wj)] 

 
Or, if we put x = gi(wi)/gj(wj), y = gj(wj)/gk(wk), we have f(x)f(y) = f(xy). This 
functional equation has the general solution 

f(x) = xa 
 

Thus, generalizing the consistency condition for A, we find that a 
generalization of the corresponding eigenvalue problem (with max = n) is solvable, 
if we replace aij by a constant power a of its argument. But we know that when a = 
1, aij = wi/wj; thus, in general, aij = (wi/wj)

a which implies that 
 

gi(wi)/gj(wj) = (wi/wj)
a       i, j = 1,…, n 

and, hence 
gi(wi) = a

iw  = g(wi) i = 1,…, n 

 
This theorem shows that the solution of a pairwise comparison eigenvalue 

problem satisfying consistency produces estimates of a power of the underlying scale 
rather than the scale itself. In applications where knowledge rather than our senses are used 
to obtain the data, one would expect the power to be equal to unity, and hence we have an 
estimate of the underlying scale itself. This observation may be useful in social 
applications. 
 
REMARK Note that we have a many-to-one correspondence between pairwise 
comparison matrices and eigenvectors. This is fortunate as it allows one to make tradeoffs 
between attributes and still obtain the same eigenvector for an answer. Therefore, we can 
obtain the same result from a variety of points of view, and thus choose those matrices 
which we favor. Otherwise, the universe of experiences would be reduced to a small set of 
attributes with fixed relative scale values. Relations and their intensity would be 
deterministic and individual choice would be nonexistent. Of course, this would not 
introduce conflict. But variety with conflict is richer than determinism. The technical 
question is: given an eigenvector and all matrices which give rise to it, can one go from 
one of them to any other by making small perturbations in the entries? In particular, is it 
possible to go from the matrix of ratios to any other by small perturbations? Another 
question is: consider two eigenvectors that are small perturbations of each other. Do there 
exist small perturbations which carry one class of corresponding matrices to the other? 
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7-6  RECIPROCAL MATRICES 
 
We now investigate some of the properties of positive, reciprocal matrices. 
 

Theorem 7-29  The eigenvalues of a positive reciprocal matrix satisfy the 
following equation : 
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PROOF  We know that 

 
1 + … + n = trace (A) = n 

 
and 

 22
1 n  trace (A2) = n2 

 
Since 2

i  is an eigenvalue of A2. 

Thus 
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which implies that the second term on the right is zero. 

 
Theorem 7-30  Let A = (aij) be an n × n matrix of positive entries with aji =

1
ija .  

A is consistent if and only if max = n. 
 

PROOF From 
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we obtain 
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It is obvious that aij = wi/wj yields  = n, and also max = n, since the sum of the 
eigenvalues is equal to n, the trace of A. 
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To prove the converse, note that in the foregoing expression we have only two 
terms involving aij. They are aijwjwi

–1 and (wiwj
–1)/(aij). Their sum takes the form y + 1/y. 

To see that n is the minimum value of max attained uniquely at aij = wi/wj we note 
that for all these terms we have y + 1/y  2. Equality is uniquely obtained on putting y = 1, 
i.e., aij = wi/wj.  Thus, when max = n we have 
 






n

ji
ji

nnnn
1,

22 2  

 
from which it follows that aij = wi/wj holds. 

If A is not consistent, then we would expect that in some cases aij  ak1 need not 
imply wi/wj  wk/wi. However, since the wi, i = 1, …, n are determined by the values of an 
entire row, we would expect the following. 
 

Theorem 7-31  Preservation of Ordinal Consistency If (o1, …, on) is an 
ordinal scale on the activities C1, …, Cn, where oi  ok implies aij  akj, j = 1, …, n, 
then oi  ok implies wi  wk. 

 
PROOF  Indeed, we have from Aw = maxw, that 

 

k

n

j

n

j
jkjjiji wwawaw max

1 1
max   

 

 

 and wi   wk. 
 

Theorem 7-32  Every positive reciprocal 2 × 2 matrix is consistent. 
 

PROOF  Obvious 
 

Theorem 7-33  The normalized left eigenvector components of a reciprocal 
positive 3 by 3 matrix are the reciprocals of the normalized right eigenvector 
components. 

The proof requires use of the following equality in the expressions for w and 
v given in Chap. 5 under dynamic priorities for n = 3. 

 

  )1(31
231312

2
23

2
12

2
133 


 
aaa

aaa
 

 
The normalized reciprocal relationship between the left and right eigenvector 
components no longer holds for n = 4 as seen by the following counter example. 
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



















16/110/12/1

613100

103/112

2100/12/11

A  

 
max = 5.73 

  w = (0.031, 0.142, 0.793, 0.034) 
   v = (0.506, 0.075, 0.020, 0.399) 

 
 

The reciprocal of w normalized is given by 
 

(0.461, 0.102, 0.108, 0.419) 
 

Thus n = 4 is the first case where the solution depends on the consistency of 
observations and their validity, rather than on the structure of the pairwise 
comparison matrix. (We also have counterexamples for n = 5, 6, 7.) 

 
One is tempted to conjecture that the reciprocal property between principal left and 

right eigenvector components holds if and only if the matrix is consistent for n  4. 
 
 
Johnson-Wang-Beine Observation 
 
Johnson, Wang, and Beine (1979) have observed that since left and right eigenvectors are 
not reciprocals of each other for n  4, the solution should benefit somehow by 
incorporating both left and right eigenvectors. This observation is both philosophically and 
mathematically interesting. There does not seem to be a natural way for our mind to 
synthesize its dominance and anti-dominance or recessiveness measures to obtain unified 
interpretation of reality. Although it is possible to construct iterative schemes to 
incorporate both left and right eigenvectors into a single measure, such a measure needs a 
simple natural interpretation. 

We have been using benefit/cost analysis to incorporate two opposing concepts 
within the AHP framework. This seems to be an effective way for dealing with the two 
sides of human experience. 
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7-7   SENSITIVITY OF THE EIGENVECTOR 
 
The question often arises, how sensitive the priorities given by the eigenvector components 
are to slight changes in the judgment values. Clearly, it is desirable that the priorities do 
not fluctuate widely with small changes in judgment. There are essentially three ways to 
test this sensitivity: (1) by finding a mathematical estimate of the fluctuation; (2) by 
deriving answers based on a large number of computer runs appropriately designed to test 
the sensitivity; (3) by a combination of the two, particularly when it is not possible to carry 
out the full demonstration analytically. 

We have already pointed out, in the case of consistency, that max is equal to the 
trace of the matrix which consists of unit entries. In this case one would expect the 
eigenvector corresponding to the perturbed matrix to undergo an overall change by an 
amount inversely proportional to the size of the matrix. 

In general, the eigenvalues of a matrix lie between its largest and smallest row 
sums. Changing the value of an entry in the matrix changes the corresponding row sum and 
has a tendency to change max by an equal amount. However, since a change in the 
eigenvector should also be influenced by the size of the matrix, we expect that the larger 
the matrix, the smaller the change in each component. 

We begin the analytical treatment of this question by considering a matrix A with 
the characteristic equation. (See Wilkinson, 1965.) 
 

det (A – I) = n + a1 n --1 + … + an = 0 
 
Now, let A + B be the matrix obtained by introducing a small perturbation in A. The 
corresponding characteristic equation is 
 

del (A+ B – I) = n + a1 ()n--1 + … + an () = 0 
 
where ak () is a polynomial in  of degree (n – k), such that ak ()  an as   0. 

Let 1 be the maximum simple eigenvalue corresponding to the characteristic 
equation of A. Wilkinson (1965) proved that for small , there exists an eigenvalue of  
A + B which can be expressed as the sum of a convergent power series, i.e., 
 

1 () = 1 + k12 + … 
 

Let w1 denote the eigenvector of A corresponding to 1 and let w1() be the 
eigenvector of A +  corresponding to 1(). The elements of w1() are polynomials in 
1() and , and, since the power series for 1() is convergent for small , each element of 
w1() can be represented as a convergent power series in . We may write 
 

w1() = w1 + z1 + 2z2 + … 
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If the matrix A has linear elementary divisors, then there exist complete sets of right 
and left eigenvectors w1, w2, …, wn and v1, v2, …, vn, respectively, such that 
 

jiwv j
T
i  0  

 
Note that wj and vj are the jth eigenvectors (right and left), and not the jth 

components of the vectors. 
The vectors zi can be expressed in terms of the wj as 
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which, when substituted in the formula for w1(), gives 
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where the tij are obtained by dividing the sij by the coefficient of w1. 

The first order perturbations of the eigenvalues are given by the coefficient k1 of 
1(). 

We now derive the expression for the first order perturbations of the corresponding 
eigenvectors. 

Normalizing the vectors wj and vj by using the euclidean metric we have 
 

1j
T
j wv  

 
We know that 
 

(A+B)w1() = 1() w1() 
 

If we substitute the expressions for 1() and w1() obtained above and use Aw1 = 
1w1, we have 
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Multiplying across by T

jv  and simplifying, we obtain 

 
1for / 11111  jwvBwvk TT  
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and 
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where, as noted above, k1 is the first order perturbation of  1 and 
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where [B] is the sum of the elements of B. 

Thus for sufficiently small  the sensitivity of 1 depends primarily on 1111 . wvwv TT  
might be arbitrarily small. 

The first order perturbation of w1 is given by 
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The eigenvector w1 will be very sensitive to perturbations in A if 1 is close to any 

of the other eigenvalues. When 1 is well separated from the other eigenvalues and none of 
the i

T
i wv is small, the eigenvector w1 corresponding to the eigenvalue 1 will be 

comparatively insensitive to perturbations in A. This is the case, for example with skew-
symmetric matrices (aji = – aij). 

The i
T
i wv  are interdependent in a way which precludes the possibility that just one 

niwv i
T
i ...,,2,1/1   is large. Thus if one of them is arbitrarily large, they are all arbitrarily 

large. 
However, we want them to be small, i.e., near unity. To see this let 
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where |wi| = |vi| = l, i = 1, 2, …, n. It is easy to verify by substitution that 
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and 

j
T
ji

T
jij wvvvd /  

 
Then 

 
j j

jij
T
jiji

T
i vcwdwv  

    j
T
ji

T
j

j
i

T
j wvvvww /  

for i = j 
1 i

T
ii

T
i vvww  

 
and 

     





ij
j

T
ji

T
ji

T
ji

T
ii

T
i wvvvwwwvwv

11
 

 
Since  

iji
T
jiji

T
j vvandww  cos       cos   

 
we have 

     

 















ij
j

T
j

ij
j

T
ji

T
ii

T
j

wv

wvwvwv

1

11

1
 

 
which must be true for all i = 1, 2, … , n. This proves that all the i

T wv1  must be of the same 

order. 
We now show that for consistent matrices 1

11 )( wvT cannot be arbitrarily large. We 
have in the case of consistency 
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Therefore : 
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Now 1
11 )( wvT  is minimized when all w1i are equal since 
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In practice, to keep 1
11 )( wvT  near its minimum we must deal with relatively 

comparable activities so that no single w1i is too small. 
To improve consistency the number n must not be too large. On the other hand, if 

we are to make full use of the available information and produce results which are valid in 
practice, n should also not be too small. 

If, for example, we reject the values  1.011 wvT , then we must have n  9.  
Under the assumption that the number of activities being compared is small and 

that they are relatively comparable, i.e., their weights differ by a multiple of their number, 
we can show that none of the components of w1 is arbitrarily small, and none of those of v1 
is arbitrarily small, and hence the scalar product of the two normalized vectors cannot be 
arbitrarily small. 

With large inconsistency one cannot guarantee that none of the w1i is arbitrarily 
small. Thus, near-consistency is a sufficient condition for stability. Note also that we need 
to keep the number of elements relatively small, so that the values of all the w1i are of the 
same order. 

The foregoing suggests that reciprocal matrices are the arch typical matrices 
which produce stable eigenvectors on small perturbations of the consistent case. It provides 
the significant observation that: to assure the stability of an estimate of an underlying ratio 
scale from pairwise comparisons, the mind must deal with a small number of elements that 
are relatively comparable. Social scientists experimentally arrived at this result long ago. 
They have observed that the number of elements should be 7  2, but have not adequately 
recognized the need for the relative comparability requirement (Miller, 1956.) 

Another useful observation is that if we assume “objects of the same magnitude” 
to differ by no more than a factor of 10, the scale used in the pairwise comparisons of 
comparable objects should have values somewhere between one and ten, otherwise we 
would compare things that are widely disparate in magnitude. This would produce 
relatively small values for some of the w1i, thus disturbing the stability of the scale, i.e., the 
eigenvector would vary wildly, even if the judgmental values in the comparison matrix 
were only slightly changed. 
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Vargas’ Formula 
 
To determine how large the perturbation of an eigenvector would be if the original matrix 
is perturbed by a certain amount, my student, Luis Vargas (1979), has shown in his 
dissertation that if a reciprocal matrix A is perturbed by a reciprocal matrix P, using 
elementwise (Hadamard) multiplication (we write A o P), then the resulting matrix is 
reciprocal, the value of the perturbation w, of the principal eigenvector w of A is given by 
 

  wywyw 1,
1  

 

 
where  ,   is the inner product of two vectors, and y w is the vector of elementwise 
multiplication of y by w. The vector y is the principal eigenvector of the matrix E* = E o P 
where E is obtained by dividing elementwise the entries of A with the corresponding 
entries of W = (wi/wj). 
 
 
Example 7-1 
In developing the chair brightness example in Chap. 2, we had form the inverse square law 
of optics for the relative brightness of the chairs (0.6077, 0.2188, 0.1108, 0.0623). The 
matrix A below consists of the ratios of these values, and the matrix P is the first optics 
matrix given in Chap. 2 which is a perturbation of A, we have 
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The eigenvector of A is given by w = (0.6079, 0.2188, 0.1108.0.0623), and max = 4. 
The eigenvector of P is given by w* = (0.6187, 0.2353, 0.1009, 0.04507) and max = 4.391. 
The perturbation matrix E is obtained by dividing A elementwise by P. 
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144.058.039.1

25.2149.091.0

71.103.2156.0

71.009.180.11

E  

 
The eigenvector of E is y = (0.2730, 0.2885, 0.2444, 0.1941) and max = 4.391, the same as 
that of P. Finally, w= (0.01076, 0.01651,  0.00985, 0.01722). It is easy to verify that w 
+ w = w*.   
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CHAPTER 

EIGHT 
 

PRIORITIES IN SYSTEMS WITH FEEDBACK 
 
 
 
 
 
8-1 INTRODUCTION 
 
So far we have modeled our problems hierarchically from higher to lower levels or 
conversely and developed a theory for measuring the priority of elements in the 
different levels of the hierarchy with respect to elements in higher levels, and with 
respect to the overall purpose of the hierarchy. 

We now turn to problems of systems in which the levels can no longer be 
labeled higher or lower. This is because a level may both dominate and be dominated, 
directly or indirectly, by other levels. Such systems are known as systems with 
feedback. They may be represented by a network where the nodes correspond to the 
levels or components. The elements in a node (or level) may influence some or all the 
elements of any other node. Our problem is to study priorities in such systems. We 
shall be mainly interested in systems in which all the elements in a node are taken 
together with respect to each element of another node-the counterpart of a complete 
hierarchy between levels. 

At first look one wonders why we need to look at more complex entities than 
hierarchies since the latter provide a reasonable representation for the functions of a 
system. One may easily conceive of a situation too complex to be represented 
hierarchically; the simplicity offered by the hierarchy may be deceptive. Many social 
science problems fall into this category. For example, recent work in organization 
theory suggests forms of organizations already in practice that are not hierarchical. An 
individual can do many or all tasks in the various components of a production system 
(see Herbst, 1976). 

We have analyzed some conflict problems both by means of a hierarchy and 
also, by a simple network in the form of a loop. Such a simple network is called a 
holarchy. The results were surprisingly close, thus demonstrating that both methods 
can lead to the same results at least in simple cases. 

In the next section we study a method based on graph theoretic concepts for 
structuring a set of elements put together in a brainstorming session, or obtained in 
some other way, into a system with levels. There are other methods, which we do not 
study here, for grouping elements in the same cluster or level depending on the 
closeness of their measurement (see Johnson, 1967). However, for our purposes this 
would be putting the cart before the horse as we need to identify and group the 
elements prior to conducting measurement. 

In Sec. 8-3 we examine the concept of priority measurement in feedback 
systems, and then introduce the supermatrix in Sec. 8-4 for carrying out such 
measurement. We show that hierarchical composition is a special case of this 
approach. In Sec. 8-5 we define impact and absolute priorities and their limiting 
values and give conditions for their existence and methods to obtain them for various 
types of systems. In Sec. 8-6 we give two examples illustrating some of these ideas. 
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8-2 REACHABILITY MATRIX IN STRUCTURING SYSTEMS 
 
Suppose there is a set of elements to be considered in a contextual relation. The set 
of elements to be modeled may have been generated by deductive logic, causal 
observation, empirical data, brainstorming, or any combination of these sources. 
A very important part of this method resides in the fact that a redefinition of the 
original set of elements is a normal and important part of the process. The partial 
or full description of the system may take one of two different, but related, forms:  
(1) a binary matrix; (2) a directed graph (or network) for a geometric representation 
of relations. (See Malone, 1975; Waller, 1976: Warfield, 1973) 

Let us assume that a set of elements H has been identified. By means of the 
binary relation "is subordinated to" we can fill in the matrix B. A "yes" answer is 
associated with one and a "no" answer with zero. The way in which we decide to 
give a "yes" or "no" answer depends on the available data, judgment, or both. 
Thus, the binary matrix B = {bij} is defined in the following way 
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j to ted subordinais i if1
bij 0

 

 
Once the matrix has been filled out, a transitivity check should be made to 

discover violations of that condition. If a transitivity violation is discovered, the 
elements involved must be examined to discover and correct the violation. 

Having generated or been given B, we form the binary matrix (I + B), where I 
is the identity matrix. It is possible to show that there is a smallest integer k such that 
 

(I + B)k – 1  (I + B)k = (I + B)k + 1 

 
i.e., each element in the matrix (I + B )k-1 is less than or equal to the corresponding 
element in the matrix (I + B)k, and corresponding elements are equal in matrices (I + 

B}k and (I + B)k + 1. 
The matrix in the right side of the above relation is called a reachability 

matrix. 
 

Definition 8-1 The reachability matrix of a directed graph is defined as a 
binary matrix in which the entries are 1 if an element is reachable from 
another by a path, and 0 otherwise. 

 
The use of a reachability matrix induces a partition of H into a set of levels 

and also induces a partition of each level into subsets, not necessarily disjoint. 
 

Definition 8-2 An element hj is said to be reachable from element hi if a path 
can be traced on the directed graph from hi  to hj. 
Definition 8-3 An element hj is called an antecedent of hi if it is possible to reach 
hi from hj. 
 
One can find from H two kinds of sets: a reachability set and a set of 

antecedent elements called an antecedent set. We denote these by R(hi ) and A (hj), 
respectively. 

R(hi) is the reachability set of the element hi H , consisting of all elements 
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of H lying on paths which originate at hi. Thus 

R(hi) = {hi  H the entry (i, j) in (I+ B)k is 1} 
 

A(hi) is the antecedent set of the element hi  H  consisting of all elements of 
H  lying on paths that include hi but do not originate at hi. Thus 
 

A(hi) = { hj  H the entry (j, i) in (I+B)k is 1} 
 

The set of those elements hi for which we have A(hi) = A(hi)  R(hi) are not 

reachable from any of the remaining elements of  H, and hence can be denoted as a 
level of a hierarchy. 

To build all levels, it is only necessary to apply the following iterative 
procedure: 
 
(1) Form a table with entries: hi, R(hi), A(hi), and R(hi)  A(hi). 

(2) Find the elements in the table which satisfy the condition 
 

A(hi) = R(hi)  A(hi) 
 
These elements form the first level. 

(3) Delete this set from the table and apply the second step, and so on 
 

This process, useful as it is, does not, for all contextual relations, usually lead 
to a hierarchy as we have defined it above. However, it leads to a network, thus: 
 
The first level may not have only one element. 
All elements in the first level are not necessarily connected only with elements in the 
second level. 
Intermediate levels may have only one element. 
 
 
Example 8-1 
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Figure 8-1 
 
Form (I + B) and the reachability matrix is 
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Figure 8-2 
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Figure 8-3 
 hi R(hi) A(hi) A(hi)  R(hi) 
 i = 1, 2, 3, 4, 5  1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5 
 

6h  1, 2, 3, 4, 5, 6 6 6 

 7h  1, 2, 3, 4, 5, 7 7 7 

 
Since A(

6h ) and A( 7h ) coincide with A(h6)  R(h6) and A(h7)  R(h7), 

respectively, the first is composed of the elements h6 and h7, i.e. 
 

First level: (
6h , 7h ) 

 
Deleting h6 and h7 from the table yields for the second level:  5421 ,,, hhhh  whose 

table is easy to generate. Thus, we may write 
 

H = {1, 2, 3, 4, 5, 6, 7} = {6, 7, 1, 2, 3, 4, 5} 
 
See Figs 8-1 and 8-2 for the network before and after the method is applied.  

Applying the foregoing technique, we obtain what others have called a 
hierarchy but what we call a network with the two levels: (1) {6, 7} and (2) {1, 2, 3, 
4, 5}. This is also illustrated in Fig. 8-2. 
 

Example 8-2 The following network of Fig. 8-3 is the result of applying the 
method to the matrix B. 

 
 
 
 

4e 6e

5e

3e

1e 2e
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                                                          e1  e2   e3  e4   e5   e6 
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To see this, we have 
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This is the reachability matrix since (I + B)5 = (I + B)4. 

 
ei R(ei) A(ei) R(ei)  A(ei) 
1 
2 
3 
4 
5 
6 

1,3,4,5,6 
2,3,4,5,6 
3,4,5,6 

4 
4,5,6 

6 

1 
2 

1,2,3 
1,2,3,4,5 
1,2,3,5 

1,2,3,5,6 

1 
2 
3 
4 
5 
6 

 
Thus, the first level is given by { 21 , ee } because A(ei) = A(ei)  R(ei), i = 1, 2 

 
 ei R(ei) A(ei) R(ei) A(ei) 
 3 

4 
5 
6 

3,4,5,6 
3,4 

4,5,6 
6 

3 
3,4,5 
3,5 

3,5,6 

3 
4 
5 
6 

 
 

The second level is given by { 3e }, the third level is given by { 5e }, and the 

fourth level is given by { 64 , ee }. 
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8--3 PRIORITY MEASUREMENT IN FEEDBACK SYSTEMS 
 
We now give a generalization of the Analytic Hierarchy Process to systems with 
feedback. These can be represented by a directed network. 

In order to describe the kind of network we are dealing with, it is worth 
remembering that priority measurement of the elements in one level of a hierarchy 
with respect to the elements of an adjacent level gives rise to a directed bipartite 
graph. A hierarchy, all of whose bipartite graphs are complete, is known as a complete 
hierarchy. This is a special case of the general incomplete hierarchy with which we 
have also dealt. The bipartite graph describes the connections between all the 
elements of one level (a lower or subservient level, with respect to the elements of an 
adjacent –higher or dominant– level). If we simply wish to indicate which level 
dominates which other level, it is sufficient to draw a single arc from the lower to the 
higher level. Thus a hierarchy may be represented by a chain or more precisely a path 
since there is direction on the arcs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-4 
 
 

Now for a system, interaction between two components, just as in the case of 
levels of a hierarchy, may be characterized by a bipartite graph which may or may not 
be complete. Again for simplicity, we may simply use an arc to show the order of 
dominance between components. Here it may be feasible to draw arcs between two 
components going in opposite directions. It is even possible, in the case of 
interdependence to draw a loop at a component. This is also possible for a hierarchy. 
In any case the result of this simplified representation of the components of a system 
with respect to prioritization is a directed network. An illustration of such a network is 
given in Fig. 8-4. We need this representation for the construction of the supermatrix. 
Raising this matrix to powers gives priorities along paths of prescribed lengths in this 
representation. 

We shall introduce a supermatrix to serve as a unifying framework for the 
study of priorities in hierarchies and in systems. A general composition principle for 



 199  

priorities in systems is developed of which our previous principle of hierarchical 
composition is shown to be a special case. 

For a system with feedback, the notion of composition of priorities among 
components requires particular attention. In this case we do not usually have a top 
level as a frame of reference to carry out composition sequentially from level to level. 
The elements of the system can interact along more than a single path. In order for the 
measurement of priorities to be meaningful, there needs to be uniformity in how to 
consider all the paths. The priorities of any component of a system with respect to any 
other may be measured in a non-unique way along the paths and cycles which connect 
them. For example, along a cycle, priorities may be measured by going around the 
cycle only once, or twice, or more. It is useful to know, for a system, a set of ultimate, 
i.e., limiting, priorities of its element as a whole. It may be necessary to do the latter 
when the elements do not cluster neatly into components. In that case we have a 
measure of the relative priorities of all the elements in the system with respect to each 
element of that system, leading to a stochastic matrix (a matrix whose columns sum to 
unity and all of whose elements are nonnegative). The columns are eigenvectors of 
pairwise comparison matrices of all the elements with respect to each element of the 
system. 

The method of the supermatrix can be applied to this case, but for clarity we 
shall deal with the case where the system is decomposable. A system is decomposable 
if its elements can be aggregated into independent components whose interactions are 
represented by the arcs of a directed network (see Feraro, 1973). In this case we 
derive the priorities between adjacent components as in a hierarchy, separately 
develop priorities for the components themselves as to their importance in the system, 
and use these priorities to weight the eigenvectors corresponding to each component, 
thus again obtaining a column stochastic matrix. 

Our study of systems with priorities parallels that of Markov chains. We 
show the correspondence between the two in order to adapt Markov chain results for 
systems. To save space, we shall be very brief and the work will be condensed. With 
the aid of a computer it is relatively easy to obtain estimates of limiting priorities by 
raising the supermatrix to high powers. However, this gives the right answer only if 
certain conditions are satisfied. For the general case, Markov chains provide an 
elegant theoretical prescription for what to do. 
 
Terminology of correspondence between  
 
Systems with priorities  Markov chains 
System System 
Component (with one or more elements)  State 
Impact or influence at time k  Transition at time k 
Priority  Probability 
Impact from a component  Transitions into a state 
Impact priority (from the ith to the jth component)  Conditional transition probability 
Composite priority  Absolute probability 
 
 
8-4 THE SUPERMATRIX –GENERAL COMPOSITION OF PRIORITIES 
 
Consider a system which has been decomposed into N clusters or components C1, C2, 
...., CN. Let the elements in component Ck be denoted by 

kknkk eee ,,, 21  , where nk is 

their number. Our earlier discussion of impact between adjacent levels of a hierarchy 
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enables us to construct the following type of matrix of impact measurement between 
the elements in corresponding components. Here we have assumed that every pair of 
components interact. If this is not the case somewhere, then the corresponding entry is 
zero. 

The supermatrix plays a fundamental role in our subsequent development of 
priorities for systems. However, we first show how hierarchical composition may be 
derived by raising the supermatrix to powers. 

As we explained earlier, we could construct pairwise comparison matrices to 
measure the priority of all the elements in the system with respect to each other as if 
there were no clustering of the elements into components. For example, we may be 
comparing industries and their impact on, or contribution to, every other industry.  
However, we prefer the component cluster approach for reasons of consistency as it is 
easier to give pairwise comparison judgments on a small set of elements. Thus we 
assume that we have the priority eigenvectors of the elements in a component with 
respect to the elements in another component (which may be the component itself). 
When this comparison makes no sense we use zeros for the eigenvector. 

The supermatrix corresponding to the interaction between the components of 
a system may be displayed as follows. 
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where the i, j block is given by 
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each of whose columns is an eigenvector which represents the impact of all the 
elements in the ith component on each of the elements in the jth component. 
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The supermatrix W is not stochastic (although each of its blocks is} unless 
we assume that its components have also been weighted according to the importance 
of their contribution to the system. See the examples at the end of the chapter for how 
to do this. The resulting priorities of the components can then be used to weight their 
corresponding elements in W which would transform W into a stochastic matrix. 
Hereafter, whenever we refer to W we assume that it has been weighted to a stochastic 
matrix. 
 
 
 

It is useful to mention the following facts. 
 

Theorem 8-1  A nonnegative matrix A is stochastic if and only if the vector 
(1, 1,...., 1) is a solution of xA = x where unity is the principal eigenvalue of A. 
(See Gantmacher, 1960) 

 
Theorem 8-2  An n by n matrix A is irreducible if and only if its directed 
graph is strongly connected. 

 
Theorem 8-3  A connected graph is strongly connected if and only it every arc 
belongs to at least one cycle. 

 
Theorem 8-4 A matrix  A is reducible if and only if at least one of the 
principal minors of order n – 1 of the matrix (max I – A) is zero. 

 
Theorem 8-5 If  A is a nonnegative irreducible matrix of order n we have (I + 
A)n – 1 > 0. 

(This says that if a graph is strongly connected and we add loops at 
every vertex the resulting matrix is primitive, i.e., any vertex is reachable from 
any other by a path of fixed length.) 

 
Theorem 8-6 A strongly connected graph (with n  2 vertices) with vertex 
matrix A is primitive if and only if tile greatest common divisor of the lengths 
of all simple cycles is unity. 

 
Theorem 8-7 A primitive (column) stochastic matrix A has the property that 

lim Ak has identical columns w (the unique equilibrium probability vector) and 
hence w = Aw has a unique solution; in addition, for any initial probability 
vector  ,1,0( )0()0()0(  ii www  Akw(0)  w. 

This is the key theorem for calculating priorities when the matrix is 
primitive. 



 202  

 
The supermatrix of a hierarchy has the following form 
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This matrix has the stable form 
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for all k  n – 1. Each coefficient in the last row gives the composite priority impact of 
the last component on each of the remaining components. Note that the principle of 
hierarchical composition appears in the (n, 1) position as the impact of the nth 
component on the first. The nth component drives the hierarchy and is the counterpart 
of an absorbing state in a Markov chain. It is a component of elements which diffuse 
or are a source of priority impacts. The essence of the above is summarized by the 
Principle of Hierarchical Composition: 

The composite vector of a hierarchy of n levels is the entry in the (n, 1) 

position of Wk–1, k  n – 1. 
Now let us look briefly at what happens to cycles. Here repeated powers of a 

regular set of components reveals lack of stability. For example for a three component 
cycle we have 
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Since the product of stochastic matrices is stochastic and the limit of powers 

of a stochastic matrix, all of whose elements are positive is a matrix with identical 
columns, multiplying this limiting matrix on the right by any stochastic matrix leaves 
the former invariant. The result of a cycle is that in the limit along different 
subsequences of powers of W, the impact of each component on every other 
component (including the component itself) is given by the same expression, i.e., by 
its limiting priority with respect to its neighboring component. 

Starting with the ith component of a cycle we index adjacent components 
successively by i, iiii n ,,,, 21  . The following is in accordance with our intuitive 

expectations. 
In a simple cycle of components, the limiting impact priority of the ith 

component is given by the eigenvector solution of the problem Wii,x = x. To see this, 
we note from the previous remark that we have for the impact of the ith component 
(by ignoring the stochastic matrices on the right as they do not affect the result) 
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which is a stochastic matrix with identical columns. Thus in the limit the priority of a 
component in a cycle is given by the eigenvector corresponding to the largest 
eigenvalue (which is unity for a stochastic matrix) of its impact matrix 
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8-5 IMPACT AND ABSOLUTE PRIORITIES 
 
We are interested in two types of priorities. Those that give the influence or impact of 
one element on any other element in the system are known as the impact priorities. 
We are also interested in the absolute priority of any element regardless of which 
elements it influences. Generally we seek limiting values of these two, kinds of 
priorities. Calculation of these priorities shows where existing trends might lead if 
there is no change in preferences which affects the priorities. By experimenting with 
the process of modifying priorities and noting their limiting trends, we may be able to 
steer a system towards a more desired outcome. 

Now for the formal definitions. If wij is the impact priority of the ith element 
on the jth element in the system then (see Feller, 1950; Isaacson and Madsen, 1976; 
and Rosenblatt, 1962) 
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The sum of the impact priorities along all possible paths from a given element gives 
the priority of an element. This amounts to raising the matrix W to powers. (The last 
expression is equivalent to Wh+k = WhWk.). 

Given that the initial priority of the ith element is w )(o
i , we have the 

following absolute priority of the jth element in paths of length k  0 
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The problem is to find the limiting impact priority (LIP) matrix W and the 

limiting absolute priority (LAP) vector w as k  . (For a priority system we may 
also be interested in determining priorities for finite values of k. That does not present 
problems of existence as does the limiting case.) Of particular interest is to determine 
when the LAP priority is independent or the initial priorities w )(o

i . Such independence 

is called the ergodicity of the system. 
The following is a classification of elements useful in characterizing a 

system. The reader may wish to go on to the actual discussion of existence and 
construction of LIP and LAP solutions. 
 

The element j can be reached from the element i if for some integer k  1, w )(k
ij  > 0 

where Wk = (w )(k
ij ). Here Wk gives the k-reach of each element. A subset of elements C of a 

system is closed (opposite definition to that for Markov chains) if W )(k
ji  = 0 whenever i is in C 

and j is not in  C.  It follows that no element in C can be reached from any element not in C. 
The subset C is minimal if it contains no proper closed subset of elements. A set of elements 
which forms a minimal closed subset corresponds to an irreducible matrix. If the matrix of an 
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entire system or subsystem is irreducible, the system or subsystem itself is called irreducible. 
A system is called decomposable if it has two or more closed sets. 

If we initially start with the jth element for some fixed j and denote its first impact 

on itself in a path of length k  1 by f )(k
j , we have 

                   1111112211 , jj
k

j
k

jjj
k
jj

k
jjjjjjjjjj wfwfwfwfwfwf     and 

 







1

)(
1

k

k
jff  

 
gives the cumulative impact of j on itself. The mean impact (of j on itself) is given by 
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According to priority influence we have (the new terms introduced below are 

essential, as we are not dealing with time transitions) 
(1) If  fj = 1, j is called an enduring (recurrent) element. Thus an element is enduring 

if the sum of its impact priorities on itself in a single step (by a loop} in two steps (through a 
cycle involving one other element), in three steps involving two other elements, etc. is equal 
to unity. (2) If fj < 1, j is called transitory (transient). An element j that is either enduring or 
transitory is called cyclic (periodic) with cyclicity c if  uj has values c, 2c, 3c,…where c is the 

greatest integer greater than unity with this property (w )(k
ij  = 0 where k is not divisible by c). 

An enduring element j for which uj is infinite is called fading (null). An enduring element j 
that is neither cyclic nor fading (i.e., uj, < ) is called sustaining (ergodic). 

For either a transitory or a fading element j, w )(k
ij   0 for every i. If one element in 

an irreducible subsystem is cyclic with cyclicity c, all the elements in that subsystem are 

cyclic with cyclicity c. It is known that if j is a sustaining element, then as k  , w )(k
jj   

1/uj; j is a fading element if this number is zero and sustaining if it is positive. Either all the 
elements of an irreducible subsystem are all transitory or all enduring and the system itself is 
called transitory or enduring, respectively 
 
REMARK  The following expression always exists whether a system is irreducible or not. In 
the former case its values are known and are as indicated 
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All finite systems of elements must have at least one sustaining element which 

generates a closed irreducible subset of elements. Since the enduring elements of a finite 
system are all sustaining the block (or component) thus generated is called sustaining. 

If j is cyclic with cyclicity c > 1 then 
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if i and j are transitory 

if i and j are enduring 
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as m  ; k = mc, m positive and c the largest integer for which k = mc holds. 
 

We had said earlier that reducibility and primitivity play an important role in 
proving the existence of LIP and LAP. We now give a few basic facts relating these 
concepts which will be useful in the ensuing discussion. 

 
A nonnegative irreducible matrix is primitive if it has a unique principal eigenvalue. 

If the matrix has another eigenvalue with the same modulus as the principal eigenvalue, it is 
called imprimitive. 

If the principal eigenvalue has multiplicity greater than unity (equal to unity), but 
there are no other eigenvalues of the same modulus as the principal eigenvalue then the 
matrix is called proper (regular). 

A primitive matrix is always regular and hence proper but not conversely, e.g., the 
identity matrix which has unity as an eigenvalue of multiplicity equal to the order of the 
matrix. A matrix is proper if and only if in the normal form, the isolated blocks are primitive. 
For a regular matrix the number of isolated blocks is unity. 
 

We note that if all the entries of W are positive, we have a primitive matrix 
and the theorem on stochastic primitive matrices applies, both LIP and LAP exist. LIP 
and LAP are the same and are given by the solution of the eigenvalue problem Ww = 
w. Actually w is any column of 

k
lim  Wk. The same result is true if W is a primitive 

matrix.  
In general the nonnegative matrix W may have some zeros. In that case it is 

either an irreducible or a reducible matrix. If it is irreducible then it is either primitive 
in which case the above discussion applies, or it is imprimitive. In the latter case it has 
a number s of eigenvalues (called the index of imprimitivity) that are not equal to 
unity whose moduli are equal to unity. This number plays an important role in the 
solution of the general case from which we can also obtain the solution to this case. It 
is sufficient to point out here that W, 2

1W ,..., Ws-1 are all not proper and multiples of 
these matrices tend toward periodic repetition. The system is cyclic with cyclicity s. 
 
REMARK The system is acyclic, cyclic, irreducible, reducible, depending on whether 
the corresponding matrix W is primitive, imprimitive, irreducible, reducible. 

If W is nonnegative and reducible then it is reduced to the normal form. If the 
isolated blocks are primitive (they are said to correspond to essential components and 
the residual matrices correspond to inessential components). The system is by 
definition called proper and LIP and LAP exist (see Gantmacher, 1960, p. 112). 
 
IMPORTANT REMARK When our column stochastic matrix is reducible its 
essential components drive the system since they are "sources" or impact-priority-
diffusing components as opposed to "sinks" or transition-probability-absorbing states 
of a Markov chain. In any diagram, except for loops, arrows initiate from and none 
terminate at such components. 

The solution for LIP is given by 
 

)1(

)1()(
lim

1









 WI
WW k

k
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where () is the minimum polynomial of W and () is its first derivative with 
respect to . Each column of  W is a characteristic vector of W corresponding to max 
= 1. If max = 1 is simple, i.e., W is regular, () may be replaced by () the 
characteristic polynomial of W.  LAP is obtained as 
 

w = Ww(o) 
 
if  W is proper, and as the eigenvector solution of 
 

Ww = w 
if  W is regular. 
 
 
REMARK One can show that the matrices of W corresponding to essential 
components are positive and those to priority impacts from essential to inessential 
components are also positive (these are given by the product (1 – Q)–1 

 TkRRR ,,, 21   of the normal form; see Chap. 7.) Only impacts from inessential to 

inessential or from inessential to essential components are zero. 
Finally, if not all isolated blocks are primitive then each has an index of 

imprimitivity as we pointed out earlier. We consider the least common multiple of 
these which is the cyclicity c of the system. Using the powers of  W,  LIP is given by 
 

W  = 
c

1
 (I + W +…Wc-1)(Wc) 

      = 
c

1
 (1 – Wc)(1 – W)-1(Wc) 

and LAP is given by 
 

w = W
~ w(0) 

 

Both W
~

 and w are called the mean LIP and mean LAP, respectively. 
If there is a single isolated block, then the mean LAP are independent of the 

initial priorities and are uniquely determined by the solution of 
 

Ww = w 
 

This is precisely the case of an irreducible imprimitive system. 
 
 
8-6 EXAMPLES 
 
The two examples below are given for two reasons: the first is to show how the 
supermatrix works, and the second is to show how the method may be applied in the 
social sciences. Of course, to formulate the questions for judgment takes a good deal 
of background preparation by experts in the field to present the relevant factors, and to 
be sure that there is no confusion or overlap in concepts being compared. As we shall 
see, interpretation of increasing powers of W have practical importance. 



 208  

In both cases, the problem is identified very briefly, together with a diagram 
representing the system and its connections. Pairwise comparison matrices of which 
there are 68 for the elements and 1 for the components in the first example, and 33 for 
the elements and 4 for the components in the second example, are not given except for  
these last 4. 

The supermatrix is then developed in two stages. First the blocks of 
eigenvectors are filled. After developing priorities for the components and using their 
weights in the matrix, the final column stochastic supermatrix is obtained. It is 
important to note that the column sums must be precisely one, otherwise there might 
be divergence to infinity or convergence to zero. 

How to weight the components is an important subject. In general, each 
block in a column corresponding to a component in the supermatrix is weighted by 
the respective eigenvector coefficient arising from the pairwise comparison matrix 
involving those components (with nonzero block entries in that column of blocks) 
which have an impact on the column component in question. (In the diagrams these 
components have arrows directed from them to the given column component.) 

In both examples we are interested in approximations to LIP by raising W to 
large powers. In this age of the computer my students (N. Bahmani, who worked on 
the first example, and D. Chalson and S. Parker who worked on the second), preferred 
to use it to raise the matrix to large powers than to use the formulas for W given in 
the theory of Sec. 8-5 

In the first example, we give the unweighted supermatrix. It corresponds to a 
complete graph on the components of the system. Hence it is positive and a fortiori 
primitive. For LIP all the columns of  W are the same and the LAP vector is any of 
these columns. It is sufficient to give an approximation to LAP from W100. For the 
convenience of the reader, we have placed this solution vector next to the initial 
definitions of the factors and components. 

In the second example we give the blocks of the supermatrix before 
weighting. This is followed by the pairwise comparison matrices of the components 
and then by the supermatrix W resulting from weighting each block as described 
above. We finally give W89 as an approximation to W 

We note that in our work on terrorism with  J. P. Bennett, we have shown 
that a properly constructed hierarchy can give results close to those of a system with 
feedback. 
 
 
Child Upbringing Example 
 
Our first example is about child upbringing. A child comes under the influence of a 
number of forces in his early years. We would like to establish priorities for these 
influences. As there is feedback in the interaction of these forces, the problem can be 
represented as a network. The main groupings of the sources of influence and their 
relevant characteristics are as shown in Table 8-1. 
 
Table 8-1 

Components Factors 

Priorities 
(from the lap 
approximation) 

C1 Father 
(Fa) 

W  Work 
Rf  Recreation 

0.024 
0.022 
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C2 Mother 

(Mo) 
 
 
 
 
 
C3 Children 

(Ch) 
 
 
 
C4 Outside 

(OT) 

Ref  Religion 
Ed  Education 
RWC  Relationship with wife and children 
 
H  Home 
Rm  Recreation 
REm  Religion 
PI  Professional interest 
TC  Take care of children 
RHC  Relationship with husband and children 
 
RP  Relationship with parent 
S  School 
PL  Play 
PE  Parent education 
 
So  School 
PR  Peer 
ME  Mass Media 
C   Culture 

0.019 
0.044 
0.020 
 
0.024 
0.026 
0.027 
0.025 
0.028 
0.021 
 
0.013 
0.020 
0.012 
0.026 
 
0.120 
0.074 
0.090 
0.360 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8-5 
 
 

The judgments for the pairwise comparison matrices were provided by a 
group of students who were particularly interested in the subject. It is noteworthy that 
these students were from overseas and that their judgments may differ from those 
which would have been given by a group of Americans. It does not seem reasonable 
to dwell on the interpretation of the results, other than to point out that according to 
this the dominant factors, which include culture and school lie in the "Outside" 
component. 

C4 C3 

C1 C2 

Work 
Recreation 
Religion 
Education 
Relationship with  
   wife and children 

School 
Peer 
Mass media 
Culture 

Home 
Recreation 
Religion 
Professional interest 
Take care of children 
Relationship with 
   husband and children 

Relationship with 
   parent 
School 
Play 
Parent education 
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The network of interactions is illustrated in Fig. 8-5. 
 
 
Steel Industry Example 
 
In this example we consider the components of the steel trading system and their 
factors to look for changes in priority from the present. The factors and components 
are shown in Fig. 8-6, page 222. 

Efficiency is measured by production performance and is closely related to 
modern technology. 

Surplus production: Japan has produced large amounts in excess of its 
consumption and hence can sell steel cheaply. 

Unused capacity results from declining demand. To keep the labor force 
employed and destroy competition the product may be sold at lower than cost price. 

Government attitude is against inflation caused by steel price rises lobbied 
for by industry. 

Government trade policy expresses reluctance to protect domestic industry. 
Price of capital: low interest rates to steel industry in foreign countries and 

high interest rates in the U.S. causing indirect rise in other costs. 
The unweighted supermatrix is given in Table 8-3. 
In order to weight the supermatrix (to make it column-stochastic) we weight 

the components according to their impact on each column of blocks. Thus the row 
components with nonzero entries for their blocks in that column block are compared 
according to their impact on the component of that column block. Then each block is 
weighted by the eigenvector coefficient corresponding to the component in that row. 
This process gives rise to the following four pairwise comparison matrices. 
 

 M  S  F  D Eigenvector 
Block   M 
Column  S 
M   F 
  D 

1  0.125  0.167  0.333 
8  1  3  6 
6  0.333  1  5 
3  0.167  0.200  1 

0.047 
0.568 
0.293 
0.092 

 
 S P Eigenvector 
Block  S 
Column P 
S  

1 0.333 
3 1 

0.250 
0.750 

 
 S U F Eigenvector 
Block  S 
Column U 
U  F 

1 0.143 0.333 
7 1 5 
3 0.20 1 

0.081 
0.731 
0.188 

 
 S P Eigenvector 
Block  U 
Column F 
F  

1 4 
0.25 1 

0.8 
0.2 

 
Weighting the supermatrix by the above weights we have the following 

column stochastic matrix of Table 8-4 and its 89th power of  Table 8-5. 
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Raising the matrix to powers gives the long-term relative influences of the 
elements on each other. What we can first say is that price and demand are the driving 
factors in the steel industry. We note as the matrix is raised to higher powers, that the 
importance of the price of capital on U.S. market share rises (shown in matrices not 
all included here) from 0 to 0.43, thus making it expensive to invest in the domestic 
steel industry, indicating a threat to its future expansion or even survival. The 
importance of unused capacity decreases to 0 as do all transitory elements in the 
system. 

Another more obvious conclusion is that the influence of demand within the 
steel industry does not change over the long run. Capital prices have the greatest 
overall effect on the model. As expected, the price of capital would increase in 
priority when compared with other input prices because the cost of capital has a large 
influence on the other input prices. This is what actually happens in the long run, but 
in the short run other elements have a larger influence on relative priorities. 
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Table 8-2 The unweighted supermatrix for the child upbringing example 
 

 C1 C2 C3 C4 
  W  R RE ED RWC H R RE PI TC RHC RP S PL PE SO PR ME C 
 
 
 
C1 
 
 
 
 
 

C2 
 
 
 
 
 

C3 
 
 
 
 

C4 
 

 

 
W 
R 
RE 
ED 
RWC 
 
H 
R 
RE 
PI 
TC 
RHC 
 
RP 
S 
PL 
PE 
 
SO 
PR 
ME 
C 
 

 
0.222 
0.095 
0.100 
0.462 
0.121 
 
0.216 
0.105 
0.122 
0.278 
0.140 
0.139 
 
0.132 
0.151 
0.132 
0.585 
 
0.290 
0.108 
0.101 
0.501 
 

 
0.209 
0.125 
0.145 
0.396 
0.125 
 
0.185 
0.190 
0.148 
0.170 
0.146 
0.161 
 
0.141 
0.140 
0.263 
0.456 
 
0.151 
0.240 
0.085 
0.424 

 
0.212 
0.140 
0.147 
0.374 
0.127 
 
0.144 
0.144 
0.260 
0.144 
0.143 
0.165 
 
0.250 
0.250 
0.250 
0.250 
 
0.135 
0.129 
0.129 
0.607 

 
0.208 
0.170 
0.100 
0.382 
0.140 
 
0.142 
0.162 
0.129 
0.283 
0.142 
0.142 
 
0.087 
0.246 
0.133 
0.534 
 
0.209 
0.095 
0.103 
0.593 
 

 
0.257 
0.220 
0.110 
0.194 
0.219 
 
0.145 
0.111 
0.127 
0.163 
0.226 
0.225 
 
0.204 
0.246 
0.204 
0.346 
 
0.186 
0.166 
0.156 
0.492 

 
0.224 
0.151 
0.172 
0.229 
0.224 
 
0.195 
0.130 
0.155 
0.135 
0.215 
0.170 
 
0.278 
0.163
0.163 
0.396 
 
0.220 
0.121 
0.121 
0.538 

 
0.224 
0.224 
0.149 
0.254 
0.149 
 
0.195 
0.137 
0.088 
0.143 
0.239 
0.198 
 
0.167 
0.167 
0.333 
0.333 
 
0.165 
0.200 
0.140 
0.495 
 

 
0.150 
0.150 
0.344 
0.161 
0.105 
 
0.220 
0.122 
0.122 
0.189 
0.192 
0.155 
 
0.250 
0.250 
0.250 
0.250 
 
0.140 
0.131 
0.140 
0.589 

 
0.228 
0.170 
0.172 
0.260 
0.170 
 
0.168 
0.102 
0.113 
0.178 
0.246 
0.193 
 
0.183 
0.282 
0.164 
0.371 
 
0.343 
0.150 
0.110 
0.397 

 
0.198 
0.232 
0.174 
0.198 
0.198 
 
0.283 
0.122 
0.103 
0.140 
0.221 
0.131 
 
0.247 
0.209 
0.198 
0.346 
 
0.162 
0.162 
0.151 
0.525 

 
0.213 
0.111 
0.122 
0.245 
0.309 
 
0.200 
0.113 
0.113 
0.161 
0.253 
0.160 
 
0.333 
0.167 
0.167 
0.333 
 
0.200 
0.200 
0.200 
0.400 
 

 
0.198 
0.111 
0.110 
0.260 
0.314 
 
0.257 
0.115 
0.103 
0.139 
0.244 
0.142 
 
0.236 
0.200 
0.095 
0.469 
 
0.186 
0.156 
0.166 
0.492 

 
0.170 
0.144 
0.127 
0.401 
0.158 
 
0.249 
0.124 
0.124 
0.142 
0.249 
0.112 
 
0.140 
0.103 
0.117 
0.340 
 
0.225 
0.124 
0.135 
0.516 

 
0.123 
0.324 
0.132 
0.303 
0.118 
 
0.148 
0.174 
0.111 
0.156 
0.300 
0.111 
 
0.143 
0.270 
0.162 
0.425 
 
0.140 
0.263 
0.140 
0.457 

 
0.372 
0.148 
0.089 
0.297 
0.094 
 
0.116 
0.219 
0.109 
0.268 
0.178 
0.110 
 
0.166 
0.410 
0.103 
0.321 
 
0.262 
0.140 
0.140 
0.458 

 
0.246 
0.150 
0.126 
0.353 
0.125 
 
0.203 
0.132 
0.129 
0.210 
0.165 
0.161 
 
0.167 
0.333 
0.167 
0.333 
 
0.341 
0.109 
0.118 
0.532 

 
0.149 
0.186 
0.130 
0.375 
0.160 
 
0.131 
0.207 
0.145 
0.168 
0.188 
0.162 
 
0.147 
0.390 
0.159 
0.304 
 
0.220 
0.121 
0.121 
0.538 

 
0.157 
0.142 
0.142 
0.423 
0.136 
 
0.164 
0.213 
0.147 
0.147 
0.164 
0.165 
 
0.147 
0.390 
0.159 
0.304 
 
0.177 
0.114 
0.188 
0.521 

 
0.143 
0.178 
0.161 
0.357 
0.161 
 
0.110 
0.198 
0.282 
0.124 
0.176 
0.110 
 
0.160 
0.354 
0.131 
0.355 
 
0.161 
0.080 
0.143 
0.616 
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Table 8-3 The unweighted supermatrix for the steel industry example 
 
   M  S   U   F    P  D 

  Md Mf Su Se Sp Ua Up FS Fe Fc Fp Pk Pe P’ Pr D 

M Md 

Mf 
0.5 
0.5 

0.5 
0.5 

 
 

0 
 

    0     0  0 

 
S 

Su 

Se 

Sp 

0.09 
0.09 
0.82 

0.09 
0.09 
0.82 

0.43 
0.43 
0.14 

0.64 
0.10 
0.26 

0.08 
0.23 
0.69 

0.58 
0.11 
0.31 

0.73 
0.10 
0.17 

   
0 

   0  0 

U Ua 

Up 
 0  

 
0 
 

 
 

0.9 
0.1 
 

0.17 
0.83 

0.1 
0.9 

0.1 
0.9 

0.1 
0.9 

0. 
0.9 

  0.  0 

 
F 

FS 

Fe 

Fc 
Fp 

 

0.28 
0.06 
0.06 
0.60 

0.28 
0.06 
0.06 
0.60 

 
 
 

 
0 

 
 

 
 
 
 

0.21 
0.43 
0.05 
0.21 

0.31 
0.08 
0.08 
0.53 

0.06 
0.18 
0.20 
0.56 

0.39 
0.07 
0.39 
0.15 

0.26 
0.56 
0.07 
0.11 

0.32 
0.13 
0.50 
0.05 

  0 
 
 
 

 0 

P 
P 

Pr 
Pe 
P 
Pk 

  
0 
 
 

0.05 
0.57 
0.28 
0.10 

0.05 
0.31 
0.11 
0.53 

0.06 
0.56 
0.26 
0.12 

  
0 
 
 

  0 
 
 
 

 0.12 
0.06 
0.26 
0.56 

0.12 
0.06 
0.26 
0.56 

0.04 
0.16 
0.57 
0.23 

0.04 
0.16 
0.23 
0.57 

0 

D D 1 1  0   0   0    0  1 
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Table 8-4 The weighted supermatrix 
 

 M S U F P D 

 
M 
 
S 
 
 
U 
 
 
F 
 
 
 
P 
 
D 

0.03 
0.03 
0.05 
0.05 
0.47 
0.00 
0.00 
0.08 
0.02 
0.02 
0.17 
0.00 
0.00 
0.00 
0.00 
0.09 

0.03 
0.03 
0.05 
0.05 
0.47 
0.00 
0.00 
0.08 
0.02 
0.02 
0.17 
0.00 
0.00 
0.00 
0.00 
0.09 

0.00 
0.00 
0.11 
0.11 
0.04 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.43 
0.21 
0.08 
0.00 
 

0.00 
0.00 
0.16 
0.03 
0.06 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.23 
0.08 
0.40 
0.00 

0.00 
0.00 
0.02 
0.06 
0.17 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.05 
0.42 
0.20 
0.09 
0.00 

0.00 
0.00 
0.05 
0.01 
0.03 
0.66 
0.07 
0.04 
0.10 
0.01 
0.04 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.06 
0.01 
0.01 
0.12 
0.61 
0.06 
0.02 
0.02 
0.10 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.72 
0.01 
0.04 
0.04 
0.11 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.72 
0.08 
0.01 
0.08 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.72 
0.05 
0.11 
0.01 
0.02 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.08 
0.72 
0.06 
0.03 
0.10 
0.01 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.12 
0.06 
0.26 
0.56 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.12 
0.06 
0.26 
0.56 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.16 
0.57 
0.23 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.04 
0.16 
0.23 
0.57 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
1.00 
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Table 8-5   Its 89th power 
 

 M S U F P D 

 
M 
 
S 
 
 
U 
 
 
F 
 
 
 
P 
 
D 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.05 
0.14 
0.34 
0.43 
0.10 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.05 
0.13 
0.34 
0.43 
0.09 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.06 
0.14 
0.37 
0.46 
0.00 
 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.06 
0.14 
0.36 
0.45 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.06 
0.14 
0.36 
0.45 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.06 
0.16 
0.41 
0.51 
0.00 
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Figure 8-6 
 
 
 
REMARK It may be helpful to conclude this Chapter by pointing out that dependence 
among the elements of a given component of a system may be computed as indicated 
in Chapter 5. The result is then weighted by the independence priorities computed in 
this chapter. 
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Se Efficiency 
Sp Price 
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Fe Efficiency 
Fc Costs 
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US Gov’t (U) 
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CHAPTER 

NINE 
 

SCALING AND MULTICRITERIA METHODS 
 
 
 
 
 
9-1 INTRODUCTION 
 
Our approach to prioritization and hierarchies has an interface with scaling methods, 
utility theory, and with multicriteria methods. Principal component analysis, 
logarithmic least squares, and the method of least squares are also discussed. Over 
several rewritings the chapter had to be shortened to nearly skeletal size. The reader 
should consult the references for additional readings. 
 
 
9-2 SCALES AND MEASUREMENT 
 
Fundamental measurement is the construction of scales by mapping an empirical 
relational system isomorphically into a numerical relational system. Derived 
measurement derives a new scale from other given scales. A good example of a 
derived scale is the scale for density derived from the fundamental scales for mass and 
volume. 

A scale is perhaps best thought of in terms of the class of transformations of 
it which leave it invariant, i.e., which preserves the information it contains. Scales 
which are available, in increasing order of strength, are as follows. 
 
(1) The nominal scale, unique up to any 1-1 transformation, which consists essentially 

of assigning labels to objects. 
(2) The ordinal scale, which gives the rank order of objects and is invariant under 

monotone increasing transformations. 
(3) The interval scale, unique up to positive linear transformations of the form y = 

ax+b, a > 0. 
(4) The difference scale, invariant under a transformation of the form y = x + b. 
(5) The ratio scale (the scale used in setting priorities), invariant under positive linear 

transformations of the form y = ax, a > 0. 
 

The essential difference between the ratio scale and the interval scale is that 
the former requires an origin as a point of reference, whereas the latter does not. The 
ratio scale originated historically in the measurement of frequencies in the calculation 
of probabilities. 

Technically a scale is a triple consisting of a set S of elements, a binary 
operation " " on the elements and a transformation F of the elements to the real 
numbers. In our case S is a set of activities or objects A1, …, An. The binary operator 
“  ” is a binary or pairwise comparison of elements as to relative dominance with 
respect to a given property. For example we write Ai Aj to indicate that Ai is 
compared with respect to Aj as to its relative dominance, e.g., with respect to weight if 
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the A's are stones. To define the transformation F we translate the pairwise 
comparisons in the form of numerical values to represent pairwise comparisons and 
arrange them in a matrix A, then solve the eigenvalue problem to define the exact 
correspondence between activities and the real numbers. This entire process defines 
the transformation. 

Why do we have a ratio scale when we use the AHP? We need to show that 
the pairwise comparisons defined by the binary operation map into the ratio scale of 
real numbers corresponding to the elements being compared. For example, if 
 

A1 F w1 
A2 F w2 

A1   A2 F
21 / ww  

 
In general, to show what kind of scale one has is difficult when the 

transformation is complicated and involves physical operations such as the rise and 
fall of mercury with temperature change. For a problem using a physical system, the 
kind of scale one uses is established empirically. However, when we are dealing with 
an abstract system, we must have a theoretical method for establishing what kind of 
scale we have. Now we know that the solution of the principal eigenvalue problem for 
positive matrices is unique to within multiplication by a positive constant. Thus our 
transformation generates (or associates) a set of real numbers,  nawaw ,,1  one for 

each activity  nAA ,,1   where a is an arbitrary positive number. This is precisely the 

definition of a ratio scale. We should note that this ratio scale derived from the 
judgment matrix is our estimate of an assumed lying ratio scale that one would obtain, 
were one’s matrix of judgments consistent. 

The following are useful observations about ratio scales. We may add 
elements from the same ratio scale to obtain a third element which belongs to the 
same ratio scale. Thus if y = ax, y' = ax' then y + y’ = a(x+x') and the multiplier is still 
a. However, neither the product nor the quotient of two such elements belong to same 

ratio scale. Thus yy' = a2xx’ and y/y' = x/x', neither of these two elements belongs to 
the ratio scale y = ax since the multiplier a  1 is absent from both. 

It is useful to observe that the sum of two elements from two different scales 
does not belong to a ratio scale. However, the product and quotient do, though it is not 
the same as either of the original ratio scales unless a or b are equal to unity. To see 
this we write y = ax, y = bx' yielding  y + y' = ax + bx' and yy' = (ab) xx', y/y' = 
(a/b)x/x'. In conclusion when dealing with two different ratio scales and still desiring 
to attain meaningful ratio scale numbers, we must multiply or divide, but never add or 
subtract. This is why it is meaningless to add such quantities as time and distance, but 
we can make sense out of dividing length by time to get velocity. 

Measurement theory is concerned with the few areas of representation 
theory, uniqueness theory, measurement procedures, and the analysis of error. 

Representation theory involves the representation of the required 
relationships by a scale; uniqueness is concerned with acceptable homomorphisms 
which preserve relationships; measurement procedures deal with the construction of 
the homomorphisms, and the analysis of error is concerned with the ways in which 
error ran arise. 

In his dissertation, Luis Vargas shows that the AHP is a method of 
measurement. First, he states a set of axioms which characterize the existence of a 
homomorphism between the set of alternatives and set of positive real numbers 
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(representation theorem). Second, he shows that the homomorphism is unique up to a 
similarity transformation (uniqueness theorem), i.e., the set of admissible trans-
formations of the homomorphism is the set of similarity transformations. Therefore, 
the triple consisting of the set of alternatives, the set of positive real numbers (or a 
non-denumerable subset) and the homomorphism is a ratio scale. However, this ratio 
scale is only a ratio scale in the narrow sense: i.e., the elements do not change under 
the transformation. 

He also points out that hierarchical measurement involves fundamental and 
derived measurement, and that the final scale is a ratio scale unique up to the same 
similarity transformation as the second level of the hierarchy. 
 
 
9-3 UTILITY THEORY 
 
Utility theory is concerned with the representation of an individual’s relative 
preferences among the elements of a set by using real numbers 

An ordinal utility function lists the rank order of the elements. Cardinal 
utility includes information on the strength of preferences. (There are also ordered 
metric ranking and multidimensional utility theory.) 

How does one obtain comparisons of the utilities of decision alternatives 
when each utility must take into account the contributions of many relevant factors? 

Additive utility theories offer one possible approach to this problem through 
the assumption that, roughly speaking, the utility of a whole equals the sum of utilities 
assigned to its parts. 

A procedure developed by Keeney (1973) and applied to solve the problem 
of the Mexico City Airport is based essentially on the use of a multiattribute utility 
function. 

It is desired to evaluate a set of alternatives in terms of their impacts on n 
attributes in order to choose tile best alternative. The impacts are described by a 
vector of numbers  nxx ,,1  . At the time the decisions must be made we cannot be 

sure what consequence will result. Thus a probability density function  nxxp ,,1   is 

given describing the likelihood of each consequence. Using this, a utility function 
 

u(x1,..., xn)  u(x) 
 
is “assessed”. One can then calculate the expected utility of each alternative. The 
alternative with the greatest expected utility is selected. 

Utility assessments, with more than two attributes simultaneously, are 
extremely difficult to do: hence, simplifying assumptions are made to derive a 
function f such that 

      nn xuxufxu ,,11   

 
where ui(xi) is a utility function over the attribute. 
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9-4  BRIEF  COMPARISON  OF  THE  EIGENVALUE  METHOD 
WITH  OTHER  METHODS OF  RATIO SCALING 
 
In his summary paper, Shepard (1972) indicates that research on dominance matrices 
and corresponding measurement has not been as extensive as those on the other three 
types: proximity, profile, and conjoint. We have been essentially interested in 
dominance matrices and their use in deriving ratio scales, and furthermore in the 
measurement of hierarchical impacts. Let us compare this method with work done by 
others. We hope that we may be forgiven if our comparison is not as complete as 
some may like to see. As it was, the core of tile ideas was improvised and grew 
completely out of applications. Then it had to be integrated in the main stream of the 
literature. 

Thurstone's model of comparative judgment demands pairwise comparison 
of the objects but only to the extent that one is more preferred to another. He recovers 
information on the stimuli by imposing assumptions of normality on the judgmental 
process. Under additional assumptions on the parameters: e.g., equal variances or zero 
covariances, he recovers various “metric” information on the stimuli. 

If k judges compare n objects and if fij is the empirical frequency 
corresponding to the number of times object j is favored over object i by the judges, 
then pij, the proportion of times j is favored over i, is given by 

 
kfp ijij /  

 
Thurstone (1927) postulated that the distribution of all discriminal processes, 

aroused by stimulus i is normal about the modal discriminal process (or mean). The 
mean discriminal process associated with stimulus i, s i, is called the scale value of 
the stimulus and the dispersion of the discriminal process is denoted by i. Assuming 
normality, ijp  can be expressed as a standard normal deviate jiij ssz  . Thus ijp  = 

0.5  when zij = 0 and this is the case when ji ss  . When zij > 0, j is assumed to have a 

higher modal discriminal process than i. We have 
 

dxep
ijz

x
ij 



 2/2

2

1
 

 
The distribution of the differences si – sj is likewise normal with standard 

deviation 
 

2/121 )2( jiijjiji r    

 
where rij is the correlation between si and sj. 

We have the law of comparative judgment. 
 

sj – si = ziji-j 
 

Each pair will have such an expansion. There are 6 such equations for 4 
objects in 14 unknowns: 4 desired scale values, 4 standard deviations, and 6 
intercorrelations. Only the zij are known. Thus it is not possible to obtain a unique 
solution to the system. As a first approximation one may assume all the standard 
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deviations to be equal to 2 and then also all intercorrelations are equal to r. The result 
is 

  2/12'
1 )1(2 rzss ijj   

 
The quantity in brackets is a constant and may serve as the common unit of 

the scale-separation of the various pairs of stimuli; it can be set equal to unity. 
If we put 





n

i
ij

n

i
ji z

n
zs

n
s

11

1
,

1
     

 
we can show, on putting s  = 0, that 
 

 11   jjjj zzss  

 
A number of restrictions are associated with Thurstone’s approach. For 

example, Guilford (1928) recommends limiting the range of probabilities. 
Torgerson (1958) has systematized and extended Thurstone's method for 

scaling; in particular, concentrating on the case in which covariance terms are 
constant, correlation terms equal, and distributions homoscedastic. 

Luce has proposed what Coombs (1964) calls the Bradley-Terry-Luce (BTL) 
model using the logistic curve which is a log transform of the probability distribution. 
Although this is different from assuming normality, in practice it is difficult to 
distinguish between the BTL model and the case in Thurstone’s work where he 
assumes normal distributions and equal variances. The BTL model is more rigorously 
grounded in a theory of choice behavior. Coombs discusses the essential distinction 
between the two models. 

We can contrast our assumptions with psychometric tradition. We do not 
begin with the supposition that ratio judgments are independent probabilistic 
processes. Instead, we investigate the consequences of changes in the judgments 
through perturbations on the entire set of judgments. This type of approach leads 
to the criterion of consistency. Thus, obtaining solutions in our method is, not a 
statistical procedure. 

Briefly, many psychometric methods perform aggregation of judgments in 
the course of solving for a scale. We assume that if there is aggregation of judgments, 
it occurs prior to the ratio estimate between two stimuli. Therefore, our solution 
procedure is not concerned with assumptions of distributions of judgment. However, 
if we want to compare any solution with the criterion of consistency, we appeal to 
statistical reasoning and perturbations over the entire matrix of judgments. 

Our use of metric information in the matrix of subject’s judgments generates 
strong parallels with principal component analysis, except that the data give 
dominance rather than similarity or covariance information. See the end of this section 
for further discussion. In principal component analysis max is emphasized, but one 
also solves for all the ’s. However, the results must be interpreted differently (see 
Hotelling, 1933). 

In our analysis, the nature of the stimuli and the task presented to subjects are 
also similar to “psychophysical” scaling, as typified by Stevens and Galanter (1964) 
and recently used widely in many attempts to construct composite measures of 
political variables including “national power”. Stevens’ technique imposes 
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consistency by asking the subjects to compare simultaneously each stimulus with all 
others, producing only one row of our matrix. This means the hypothesis of 
unidimensionality cannot be tested directly. If Stevens’ method is used, one should 
take care that the judgments over stimuli are known to be consistent or nearly so. In 
addition, there is no way of relating one scale to another, as we do with the hierarchy. 

Krantz (1972) has axiomatized alternative processes relating stimuli to 
judgments and derived existence theorems for ratio scales. Comparable 
axiomatization has not been extended to hierarchies of ratio scales. 

Some have approached problems of scaling as if the cognitive space of 
stimuli were inherently multidimensional, but we choose instead to decompose this 
multidimensional structure hierarchically in order to establish a quantitative as well as 
qualitative relations among dimensions. The individual dimensions in 
multidimensional scaling solutions functionally resemble  individual eigenvectors on 
an any level of our hierarchy. 

The formal problem of constructing a scale as the normalized eigenvector w 
in the equation Aw = w, for  a maximum, is similar to extracting the first principal 
component. When subjects are asked to fill the cells of only one row or one column 
and the other cells are computed from these (to insure “perfect consistency”) the first 
eigenvalue, n, represents 100 percent of the variation in the matrix. However, “perfect 
consistency” applies to the data except that a normally distributed random component 
is added to each cell of the matrix, then one’s data would lead to principal factor 
analysis, and a “single-factor” solution would result. Thus, the imposition of perfect 
consistency by the experimenter produces an uninteresting result of exact scalability, 
which was assured by the experimental design of single-comparisons. In fact, one can 
see that if the subjects fill only one row or column of the matrix, and if the subjects’ 
task is to generate ratios between pairs of stimuli, then the procedure is formally 
equivalent to having the subjects locate each stimulus along a continuum with a 
natural zero at one end: this is the “direct-intensity” technique of psychophysical 
scaling. 

There is no simple relationship of the eigenvalue solution to least square 
solutions through there have been papers (for example, by Eckart and Young (1936), 
Keller (1962), and Johnson (1963) concerned with approximating a matrix of data by 
a matrix of lower rank, minimizing the sum of the square of the differences. In 
general, the two solutions are the same when we have consistency. A widely accepted 
criterion for comparison is not known. Thus, it is not clear which is superior. Iterating 
the eigenvalue procedure helps us approach consistency, which is our preferred 
criterion. 

Tucker (1958) presents a method for the “determination of parameters of a 
functional relation by factor analysis”. He states, however, that “the rotation of axes 
problem remains unsolved .....,” that is, the factor analysis determines the parameters 
only within a linear transformation. Cliff (1975), suggests methods for the 
determination of such transformations where a priori theoretical analysis or 
observable quantities provide a criterion toward which to rotate the arbitrary factor 
solution. 

The hierarchical composition is an inductive generalization of the following 
idea. We are given weights of independent elements in one level. We generate a 
matrix of column eigenvectors of the elements in the level immediately below this 
level with respect to each element in this level. Then we use the vector of  (weights 
of) elements in this level to weight the corresponding column eigenvectors. 
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Multiplying the matrix of eigenvectors with the column vector of weights gives the 
composite vector of weights of the lower level elements. 

Because the matrix of eigenvectors is not an orthogonal transformation, in 
general the result cannot be interpreted as a rotation. In fact, we are multiplying a 
vector in the unit n-simplex by a stochastic matrix. The result is another vector in the 
unit simplex. Algebraists have often pointed to a distinction between problems whose 
algebra has a structural geometric interpretation and those in which algebra serves as a 
convenient method for doing calculations. Statistical methods have a convenient 
geometric interpretation. Perturbation methods frequently may not. 

In the works of Hammond and Summers (1965) concern is expressed 
regarding the performance of subjects in situations involving both linear and nonlinear 
relations among stimuli before concluding that the process of inductive reference is 
primarily linear. In our model subjects response to linear and nonlinear cues seems to 
be adequately captured by the pairwise scaling method described here, by using the 
hierarchical decomposition approach in order to aggregate elements which fall into 
comparability classes according to the possible range of the scale used for the 
comparison. 

Note that our solution of the information integration problem discussed by 
Anderson (1974) is approached through an eigenvalue formulation which has a linear 
structure. However, the scale defined by the eigenvector itself is a highly nonlinear 
function of the data. The process by means of which the eigenvector is generated 
involves complex addition, multiplication, and averaging. To perceive this complexity 
one may examine the eigenvector as a limiting solution of the normalized row sums of 
powers of the matrix. 

Anderson (1974) also makes a strong point that validation of a response scale 
ought to satisfy a criterion imposed by the algebraic judgment model. Such a criterion 
in our case turns out to be consistency. 

Finally, it may be useful to mention briefly a graph-theoretic approach to 
consistency. A directed graph on n vertices which is complete (i.e., every pair of 
vertices is connected by a directed arc) is called a tournament. It can be used to 
represent dominance pairwise comparisons among n objects. Its cycles would then 
represent intransitivity. For example, every three vertices define a triangle, but not all 
triangles form 3-cycles. The number of cycles of given length is used to define an 
intransitivity index for that order, e.g., between triples or quadruples. Inconsistency is 
then defined (see Marshall (1971)) in terms of the ratio of the number of three, four, 
or more cycles in a given graph to the maximum number of cycles of that order. For 
3-cycles the maximum number is (n3 – n)/24 for n odd, and (n3 – 4n)/24 for n even. 
For 4-cycles it is (n3 – n)(n – 3)/48 for n odd, and (n3 – 4n)(n – 3)/48 for n even. These 
results have not been generalized to k-cycles. However, the average number of k-

cycles for a random orientation of the arcs of a complete graph is (k – 1)
k

k

n















2

1
. 

As yet we have found no relationship between this definition of inconsistency and our 
eigenvalue-related definition. It is not likely that there will be. The above 3-cycle 
result is due to Kendall together with its statistical implications. It is nicely discussed 
in standard statistical references (see, for example, Moroney, 1968). 

We referred above to principal component analysis. Let us consider this 
procedure very briefly. 
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Consider a random vector X with p components, zero mean vector and 
covariance matrix C. The distribution of X is unspecified. Let b be a p-component 
column vector with bTb = 1. 

Now E(bT X)2 = E(bTXXTb) – bTCb; E denotes the expected value. 
The normalized linear combinations bTX with maximum variance subject to 

bTb = 1 is obtained from the Lagrangian function defined by 
 

bTCb – (bTb – 1) 
 
with  as the Lagrange multiplier. 
 

Equating the derivative with respect to b to zero gives 
 

(C– I)b = 0 
 
This has a nontrivial solution for  an eigenvalue of C. 

If  we multiply on the left by bT and use the constraint condition, we get bTCb 
= bTb = . This shows that  is the variance of bTX. Thus, for the maximum variance 
we should use max. If we normalize the corresponding solution b1 by dividing by the 
sum of the squares of its coefficients, we have b XT

1 as a normalized linear 
combination with maximum variance. One next makes a new normalized combination 
bTX  with maximum variance of  all linear combinations uncorrelated with  b XT

1 , i.e., 
we want 
 
        0    11 bXXbEXbbE TTTT   

1max1 bbCbb TT   

 
But Cbmax = maxb1 and hence bTX is orthogonal to b XT

max . Using bTb = 0 as a 

new constraint we form a new Lagrangian function 
 

   121 cbbbbCb TT
b

T    

 
with Lagrange multipliers  and . Proceeding in this manner one can show that  = 0 
and  is the second largest eigenvalue of C. (Note that since C is symmetric as a 
correlation matrix, all its eigenvalues are real.) We take the eigenvector corresponding 
to it and proceed as before, now imposing the condition that bTX has maximum 
variances of all normalized linear combinations uncorrelated with XbT

1  and with 

XbT
2  and so on. 

When the eigenvectors are obtained in this fashion, the ratio of each 
eigenvalue to the total sum of the eigenvalues gives the percentage of the total 
variance reflected in its corresponding component. Thus as a first (and important 
practical) approximation, one concentrates on the principal component and looks for 
variations in conditions that lead to variations in the expression XbT

1 . 
Pinski and Narin (1976) attempt to determine the influence of specific 

journals by examining the number of citations. They set up a citation matrix of the 
number of articles from each journal cited in every journal. The columns are then 
normalized to account for the different sizes of the journals. An eigenvalue procedure 



  225

based on a general matrix they developed (that is not ratio scale oriented) is followed 
to calculate the influence weights. 
 
 
9-5 PERTURBATION APPROACH: LOGARITHMIC 
LEAST SQUARES 
 

Our problem in the inconsistent case may be stated as follows: 
We wish to determine nww ,,1   such that 

 

)(),;...;,;,(  ij
j

i
jijijiijij g

w

w
wwfa   

 
where we have with respect to the perturbation parameters 
 

1)(lim ijg  

 
Here the argument in gij() involves the same variables and parameters as in fij. Note, 
for example, that a multiplicative parameter should be allowed to tend to unity, an 
additive parameter to zero. In other words, if there is any hope of retrieving good 
estimates for wi/wj from aij, the perturbations must be small. Note, for example, that 
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We may write (9-1) above in the form 

 

ij
i

j
ij g

w

w
a   (9-2) 

 
This basic underdetermined set of n2 equations in the n2 + n wi and gij 

requires, n additional equations to be determinate. The choice of these relations seems 
open. However, it turns out that the n relations may be derived on the perturbation 
argument of the paradigm case given above. From that infinitesimal generation 
argument we require that the following set of relations should always hold: 
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


n

j
ijg

1
max    i = 1,…, n 

 
a set of conditions which depend on A = (aij). 

Problem 1: Find wi, i = 1,..., n, which satisfy 
 


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
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j
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max      i = 1,…, n   (9-3) 
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The set of conditions (9-2) and those of (9-3) have often been used as the 
necessary conditions which arise from the solution of an optimization problem. For 
example, (9-2) may be written as log aij(wj/wi) = log gij, and on squaring both sides 
and taking the sum over i and j the problem becomes one of minimizing error with 
respect to wi, i = 1,…, n. Problem 2 is to find wi which minimize 
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This is the logarithmic least squares problem. However, this problem has precisely the 
same solution 
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obtained by taking products with respect to j on both sides of (9-2) and putting 


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
n

j
ijg

1

1, a set of n conditions independent of A = (aij). This solution may be 

interpreted as one yielding the nearest consistent matrix to a given matrix in the sense 
of logarithmic least squares. 

In statistics, principal component analysis uses the system (9-3) as the set of 
necessary conditions for the following kind of optimization problem. Minimize the 
quadratic form 
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The Lagrangian of this problem is 
 

   1;,,1  gfwwL n   

 
The parameter  appears in the problem as the Lagrangian multiplier (which 

is also a perturbation parameter for the optimization problem) rather than a direct 
parameter as in (9-3). In fact, one may construct a wide class of optimization 
problems which use either (9-2) or (9-3) as a set of necessary conditions. 

It is useful to take the perturbation equations (9-2) and tabulate the 
assumptions made by different methods together with the corresponding solutions. 
We shall call the left eigenvector, which is the solution of the harmonic mean 
formulation, the antipriority vector. It provides a measure of how much an element is 
dominated by other elements in its level. The corresponding vector obtained by 
hierarchical composition measures the impact of the hierarchy on each element of a 
level. We have Table 9-1. 
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REMARK The logarithmic least squares solutions associated with the two matrices of 
the optics problem of Chap. 2 are (0.61, 0.24, 0.10, 0.05) and (0.61, 0.23, 0.10, 0.06) 

Table 9-1 is self-explanatory as it relates the arithmetic, geometric, and 
harmonic means to our problem of scaling. 
 
 
9-6  LEAST  SQUARES  FOR  APPROXIMATING  A  MATRIX  
BY  ANOTHER  MATRIX  OF  LOWER  RANK 
 
The matrix W = (wi/wj) of rank one is obtained by solving the eigenvalue problem. It 
is an approximation to A = (aij). We shall need the fact that any matrix may be 
approximated by another matrix of lower rank. This is done in the following fashion. 
First we note that 
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where the i are the eigenvalues of (A – W)(A – W)T. 

Now, for any matrix X, XXT is symmetric and all its eigenvalues are real. 
Also, X and XT are positive. Thus XXT is positive and has a unique real positive largest 
eigenvalue. 
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Table 9-1  Four perturbation methods with  ij
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geometric mean 

Same for columns as for row geometric mean    
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According to Johnson (1963) 
 

AAT  PPT’ 

ATA  QQT 
 
where  is a diagonal matrix whose entries are the eigenvalues of A in descending 
order of magnitude; the eigenvectors of AAT are the corresponding columns of P and 
those of ATA are the corresponding rows of QT. As a final result we mention that the 
best least squares approximation of A by a matrix of rank r is given by 

 
T
rQP 2/1,  

 
were P, and T

rQ  are the parts of  P and QT associated with the first r columns of . 
Let r = 1, then P1 is the eigenvector of AAT associated with the maximum 

eigenvalue. Q1 is the eigenvector of ATA associated with the maximum eigenvalue. If, 
as in the consistent case  
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where 
P1 =  nppp 11211 ,,,    

 
then our consistent case solution is the best least square approximation. This need not 
be so in the inconsistent case. 

Let us illustrate the best least square approximation idea on one of the optics 
example matrices A, by forming AAT, ATA and obtaining their eigenvalues and 
eigenvectors. The eigenvalues, which are the same for both, are the diagonal elements 
of  in descending order of magnitude. The eigenvectors AAT are the corresponding 
columns of P and those of ATA the rows of QT. 

We have 
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From the maximum eigenvalue approach we obtain a vector as an estimate of 
an underlying ratio scale. From the least squares approach we obtain a matrix Pr 
r

1/2 T
rQ  of  lower rank (unit rank in our case) which is the best least squares fit to the 

given matrix of judgments. Naturally this matrix is a better fit than the matrix W = 
(wi/wj) in the sense of least squares, i.e., if we define F = A – Pr r

1/2 T
rQ  and G = A – 

W and take the sums of the squares of their entries, we can easily show that the first is 
equal to trace (FF’) = trace s where s is the diagonal matrix of eigenvalues not 
included in r (in our case r corresponds to the largest eigenvalue of ATA and trace 
s is the sum of the remaining eigenvalues.) In fact we can show that trace [(A – 
W)T(A - W)]  trace (FF’) as indeed it must. However, the problem is how to derive a 
scale vector from the least squares approximation matrix Pr r

1/2 T
rQ . If we arbitrarily 

assume that this matrix is nearly consistent, we may use any of its columns 
(normalized) as an approximation to the underlying scale. But now the problem is 
how good this vector is when compared with the maximum eigenvector. For our 
illustration, we used the root mean square deviation of each of these from the known 
underlying scales in problems where it was desired to make the comparison. As we 
show in the example below, the maximum eigenvector is clearly superior to the least 
squares vector (as we have interpreted it} as an approximation to reality. 

If we form r by putting all diagonal elements but the first, which is the 
largest, equal to zero in  then we have 
 





















81.066.039.010.0

57.128.176.019.0

64.397.276.145.0

29.794.552.390.0

2/1 T
rrr QP  

 
If we form Fr = A – Pr r

1/2 T
rQ  and take the sum of the squares of its 

elements, we obtain 1.6 which is precisely the trace of As, i.e., the sum of the 
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remaining eigenvalues. If we assume that the above matrix is consistent, in order to 
derive a scale vector from it, we normalize its first column and obtain s = (0.548, 
0.274, 0.118, 0.061). It is interesting to note that all the other columns give the same 
result since the matrix has unit rank. 

Although the vector is visibly not as good an approximation as the 
eigenvector we find that its mean square deviation from the actual vector (0.61, 0.22, 
0.11, 0.06) is 0.00 155 as compared with 0.000 05 for the maximum eigenvector w = 
(0.62, 0.22, 0.10, 0.06) corresponding to max = 4.1. This shows that the eigenvector 
solution for this example is superior to the least squares solution. 

Let us now use the elements of w and of s, to form the matrices of ratios W = 
(wi/wj) and S = (si/sj). We then compute A – W and take the sum of the squares of its 
entries to obtain 13.42. Doing the same for A – S we have 11.45, which is close to the 
first but somewhat better. This means that the least squares approximation is better if 
we wish to minimize the sum of the squares of the differences. Overall we conclude 
for this example, that since we are interested in the scale and not in the matrices of 
ratios, the eigenvector answer is better; this despite the fact that it does not satisfy the 
minimum squares criterion. 
 
 
9-7 MULTICRITERIA METHODS 
 
A variety of methods are available for the analysis of multiple objective decisions. 
Some of them are structured to deal with predicting actions and choices in future 
decision situations. Others are structured to assist the decision maker with practical 
techniques which he can use to improve his decision making. 
 
 
Weighting Methods 
 
Srinivasan and Shocker (1973) review an earlier summary of methods of weight 
estimation given in Sluckin (1956) and in Blum and Naylor (1968). These methods 
are as follows: 
 
(1) Weighting subcriteria on the basis of their predictability (using canonical 

correlation). 
(2) Weighting subcriteria proportional to their average correlation with other 

subcriteria. 
(3) Weigtling subcriteria to maximize the difference in the composite's value 

between stimuli. 
(4) Weighting subcriteria to maximize explained variance (using factor analysis). 
(5) Weighting subcriteria proportional to their reliabilities. 
(6) Equal weighting of subcriteria. 
(7) Weighting subcriteria to equalize “effective weights” (i.e., proportion of 

composite’s variance). 
(8) Weighting on the basis of a dollar criterion. 
(9) Weighting subcriteria using expert judgment. 
(10) Weighting subcriteria by multiple regression an intervally scaled global criterion. 
 

They are examined or criticized using three basic criteria: relevance, 
multidimensionality, and measurability. Methods (l) through (7) lack relevance by 
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either ignoring it by using an arbitrary statistical objective, or in an indirect and 
incomplete way by other subcriteria than the global criterion. Methods (5) throughout 
(9) involve biased estimation as one judges in terms of one subcriterion and then in 
terms of another independently, and hence the resulting multidimensional vector has 
bias between its components, sometimes double counting the importance of a 
subcriterion. Methods (8) through (10) suffer from a good way of producing measures 
that together make sense for weighting with respect to the global criterion. Examples 
of weighting methods are: 
 
Outcomes versus objectives 
Let us assume we have the outcomes O1,O2,..., Om. The procedure steps are as 
follows: (See Ackoff, et al., 1962, and Fishburn, 1972.) 
 
(1) Rank the objectives in their order of value. 
(2) Assign the value 1.00 to the first objective and assign values to the other 

objectives in a suitable form. 
 
 Objective Value 
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v


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1 1

 

(3) Compare the most important objective with the combination of all the others. In 
short, compare O1 with O2 + … + Om. If  1   v2 + … + vm, then compare O2 with 
O3 + … + Om, if v2  v3 + … + vm., then compare O3 with O4 + … + Om, and so on, 
until the comparison of Om–2 versus Om–1 + Om) is completed. 

(4) If  1 < v2 + … + vm, then compare O1 with O2 + … + Om–1.  If  1 < v2 + … + vm–1 
still holds, then compare O1, with O2 + … + Om–2, etc. until either O1 is preferred 
to the rest, or until the comparison of O1 versus O2 + O3 is completed, then 
proceed to step (3) again. 

(5) Once the values, vi, have been found, normalize them dividing by 
i

iv .  

The assumptions underlying this procedure are as follows: 
 

For each outcome we have associated a real nonnegative value. 
If Oi is prefered to Oj then vi > vj. 
If Oi and Oj are equally preferred than v1 = vj. 
If the outcomes Oi and Oj have associated the values vi and vj, respectively, then 

the outcome Oi + Oj has associated the value vi + vj. This assumption fails if  Oi and Oj 
are mutually exclusive. 

When a large number of outcomes is involved, this procedure is very 
laborious. In addition it does not produce unique scales and cannot cope with 
hierarchical type of problems. Klee (1971) has used a method of direct comparison of 
n objects. He first arranges the objects ordinally from most to least preferred. He 
compares the most preferred with the second most preferred, the second with the third 
and so on, each time assigning a numerical value to this ratio. When the process is 
completed, he assigns the number 1 to the least preferred or nth object and multiplies 
it by the ratio of the comparison of the (n – 1)st to the nth to get the weight of the (n – 
1)st and so on, working backwards and obtaining a relative scale estimate for the n 
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objects. There does not seem to be an intrinsic way of estimating consistency with this 
method. 
 
Outcomes versus functions of objectives 
 
Fishburn (1964, 1967) suggests an approach using additive utility theory through the 
assumption that the utility of the whole equals the sum of utilities assigned to its parts. 
Once all the objectives ors are properly identified and the measurable contributions 
are determined for each plan, the results can be put in the following matrix form 
 

Plan Objectives 
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For each plan u1 one assigns a vector  nxxx iii ,,, 21   to the objectives. What 

is desired is to weight the plans in order to determine which one to use. From utility 
theory, an overall measure of the contribution of u1 (which we denote by V(u1)) is 
obtained as a function of the n-dimensional vector  nxxx iii ,,, 21   that is, V(u1) = 

V  nxxx iii ,,, 21  . Using the additivity assumption 

 
  inijiii vvvvuV   21  

 
the value of the objective for each plan is determined by the product of the relative 
importance of the objective v(oj) and the utility for the numerical measure xij, denoted 
by v(xij). In our notation 
 

   ijjij xvovv   

 
Estimating v(xij) 
 

As a first attempt to estimate v(xij) one may assume linear utility functions which are 
normalized so that they take on values between 0 and 1. For objectives measures are 
directly related to utility levels (e.g., contribution to national income), we may assume 
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and for those which are inversely related to utility levels (e.g., contribution to 
pollution) 
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Estimating v(oj) 
 
(1) Ranking methods The v(oj) are ranked from smallest to largest, such as 
     ,,, 21 novovov  where the numbering of the objectives corresponds to the 

positions. Sometimes, a judge is asked to place a numerical value on each of 
objective, indicating by 1 that which is most important, by 2 the next important, and 
on. Other ordering methods exist which are variants of this method. 
 
(2) Direct rating method The objectives may be presented next to a continuum or a 
finite number of discrete values marked off in units from 0 to 10. Then, for each v(oj), 
a judge is asked to mark on the continuum the importance of the given objective. The 
judge may be permitted to select points between integers, like 2.7 and may assign 
more than one objective on a scale position. 
 
(3) Method of outcomes versus objectives (described above}. 
 
(4) Half-value sum Let us assume that 0 <  1ov  < … <  nov . The basic approach is 

to form half-value chains as follows. Begin with k near n and estimate aj such that 
     kjj ovovov  2 and set      kj ovov 2/11  . Repeat the process with  1jov  

replacing  kov and continue to get half-value chains as long as possible. A smooth 

curve tracing the different half-value chains may be used as an estimate of the desired 
utility function. For example, suppose thirty objectives have been ranked as follows 

     30210 ovovov   . Suppose            ,, 231917302422 ovovovovoov   

           104218119 , ovovovovovov  . 

Using a half-value chain           310182330 ,,,, ovovovovov  and setting 

  ,13 ov  the estimated utility function may be represented graphically. 

 
(5) Ordered metric methods Suppose 0 <  1ov  <  2ov < … <  nov , then the 

ordered metric ranking in the binary case is a ranking of the adjacent differences 
             123121 ,,,,0  nn ovovovovovovov  . 

In one instance, the  iov differences may be judged directly. In another 

instance, a comparison between    12 ovov  and    34 ovov  , for example, may be 

made by comparing    41 ovov  with    23 ovov  . When the same  iov  is in both 

differences, such as a comparison of    23 ovov   with    12 ovov  , then comparison 

is made directly. 
 
(6) Indifference curve method In many problems it is desirable to determine the 
utility or worth function of an allocation of resources to various activities and to 
maximize it subject to constraints imposed by the quantities available, their price, and 
the amount of funds available. But it is usually difficult to find such a function, and 
instead indifference curves are determined for the activities in pairs bypassing the 
numerical approach. To find such a curve an individual is asked questions to 
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determine tradeoff between the two attributes being compared. The indifference curve 
is where values of the two attributes have equal worth. Here one has two dimensional 
curves from which a reasonable multidimensional surface needs to be derived and the 
maximum found on that surface. An objection to the method is that quantitative 
information is lost. 
 
Sequential Elimination Methods 
 
Lexicographic order 
The term “lexicographic” reflects the similarity between this method and the method 
by which words are ordered in a dictionary. The lexicographic approach requires that 
the attributes be ranked in terms of importance, and that the attribute values be placed 
on an ordinal scale. Once the most important attribute is selected, the alternative 
having the highest value for this attribute can be determined. If a single alternative 
emerges, this alternative is chosen, and the procedure stops. If there are several 
alternatives with the same highest value on the specified attribute, then the attribute 
ranked second in importance is compared across all these alternatives. The process 
continues in this way until a single alternative emerges, or until all attributes have 
been examined. 

A weakness of lexicographic ordering is that an infinitesimal movement 
along one of the components does not outweigh large movements along others. A 
weaker criterion is: the Principle of Pareto optimality. One alternative is considered 
superior to another if it exceeds the latter in at least one dimension, and is no worse 
than the second in any other dimension. If an alternative satisfies this property with 
respect to all other alternatives, then it is said to be Pareto optimal. 
 
 
Mathematical Programming Methods 
 
Global objective function 
The main problem here is to pool together multiple objectives to optimize the result 
subject to constraints in a linear programming framework. The idea is to take a 
convex combination of these objective functions with different parameters, and solve 
the resulting parametric programming problem. We obtain a finite family of solutions 
corresponding to a tessellation of parameter space into cells. 

Judgment is used to select the solution that seems most appropriate. 
 
Goals in the constraints; Goal programming 
All global optima are, in a large context, local optima. We know that the solutions are 
optimal only in a restricted context. The optimal solution is not a strategy to be 
followed, but additional information, to be evaluated in the context of the large system 
of which the problem was a component. Most of the time our objective is to maximize 
profit from all production. This gives the impression that we have only one 
objectives–profit. But suppose we take a larger viewpoint. One which involves a 
number of separately identifiable goals, which cannot be easily combined into one 
function to be optimized. For example, we may wish to consider production levels for 
two different products that do the most for (a) net profit, (b) gross profit, and (c) cash 
position, subject to a set of restrictions on resources. 
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Clearly the solution which maximizes net profit is unlikely to be the same as 
that which maximizes the other two goals. To resolve the uncertainly of our larger 
purpose, we should re-determine whether maximization is our objective at all. 

We do not really seek to maximize or minimize in making policy decisions, 
but rather we seek to “satisfy”. Satisfying suggests setting goals and then seeking the 
particular allocation which offers the best promise of achieving those goals. This is 
the purpose of goal programming. Let us consider the following example 
 

Goal 1: 60 1x  + 50 1x  = 1,500 (net profit goal) 

Goal 2: 2 1x  + 4 2x   80 

Goal 3: 3 1x  + 2 2x   60, 1x , 2x   0 
 

1x  and 2x  represent the number of units of products 1 and 2, respectively; 80 is the 
number of hours on machine A and 60 on machine B not to be exceeded. The three 
goals are not compatible. To solve the incompatibility problem, let us assign first 
priority to goal 1, second to goal 2, and third to goal 3. Let us attach the following 
strict meanings to the priority assignments: 

Goal 1 should be satisfied as closely as possible, whatever the consequence 
in approximating goals 2 and 3. 

Once goal 1 is achieved, goal 2 should be satisfied as closely as possible, so 
long as deference to goal 2 does not compromise goal 1. 

Once goal 2 is achieved, goal 3 should be satisfied as closely as possible, so 
long as deference to goal 3 does not compromise goal 2. 

So, the problem is planned as follows: minimize 
 

  3322111 )( dPdPddP  

subject to 
500,15060 1121   ddxx  

8042 2221   ddxx  

6023 3321   ddxx  

 
and to a nonnegativity condition on all variables. Here 

1d and 
1d are shortage and 

surplus variables, respectively. 
If P1, P2, and P3 are regarded as coefficients of the variables we would be 

dealing with incommensurables, since 
1d  and 

2d  are measured in dollars, and the 
remaining variables are measured in machine hours. To resolve this difficulty, let us 
think of P1, P2, and P3 as labels that specify the priority ordering of the goals to which 
they correspond, rather than as coefficients. Thus )( 111

  ddP means: First make 
  11 dd as small as possible, subject only to the nonnegativity restriction on all 

variables. And 
22dP means: make 

2d  as small as possible without compromising 

achievement of the first goal, and so on to 
33dP . 

One must consider the priorities P1, P2, and P3 as being of such magnitude 
relative to each other, that P1 is much larger than P2 which in turn is much larger than 
P3. 

The connection between goal programming and hierarchies is through the 
concept of consistent scenarios in planning. 
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In a complex planning situation, the use of a hierarchical approach yields a 
composite scenario which suits all decision makers. However, this scenario must be 
realistic and compatible with all the dimensions of the problem. For example, realistic 
means that one cannot use more resources than one has. Compatible means that 
objectives must not conflict. If we define a scenario by a vector of state variables, X, 
and a set of decision variables, Y, then the scenario (X, Y) is consistent it X = g(Y), 
where g is the model of the process functions of the system, i.e., of the physical flows 
in the system. The eigenvalue method and the principle of hierarchical composition 
may be used to construct a composite scenario whose state variables have the value R. 
If  R cannot be obtained as a function of  the decision variables, in the form g(Y*) 
where Y* is a particular set of values for the problem, then R is not consistent and goal 
programming is used to revise the planning targets represented by R. 

Specifically, assume that A is the matrix of technological coefficients of a 
given economy. Let X be the industrial outputs and Y be the final demands. It is 
known that X = (I–A)–1 Y. Suppose that the state variable X* provide the level of 
consumption of a certain resource, the cost associated with its processing and also the 
emissions of pollutants in this processing. The total impact coefficients and the input-
output model D represent the system process functions. We have X* = DX, with X = 
(I–A)–1 Y. In order for the composite scenario values R to be consistent, we must have 
X* = R. 

If this is not true, the following optimization problem provides the 
framework to make R realistic and compatible:  
Minimized 





  dpdpz  

subject to where 
BU + Id+ + Id– = R    U  0 

where 








 


D

A
B

)1(
 

 
The solution U of this problem provides a consistent scenario suited to the specific 
real-life situation. 
 
Local objectives: Interactive programming 
The multiple criteria problem which we consider may be written as 
  

  xfUMax
Xx

 

 
where f  is an r-dimensional vector of real-valued functions, x is an n-dimensional 
vector of real-valued variables, X is the feasible region of Rn associated with x and U 
is the decision-maker’s utility function defined on the range off. One can assume that 
U is increasing in each fi, and that X is convex and compact. U and each component of 
f are concave and continuously differentiable. 

The decision-maker’s marginal substitution rates among the criteria at a 
particular point may be used to estimate the direction of the gradient of his utility 
function at that point. This information may be used in the context of existing 
nonlinear mathematical programming algorithms to obtain an optimal solution to the 
problem. 
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Spatial Proximity Methods 
 
Conjoint measurement 
This is concerned with combining a set of independent variables in some functional 
form (generally a polynomial) to predict the values of a dependent variable. The 
coefficients or parameters of the function are usually estimated by regression 
techniques. There are several algorithms or approaches as to how to do this estimation 
by weighting the importance of the variables to the people involved (see Green and 
Wind, 1973). For various aspects of product/marketing decision applications see 
Wind (1979). 
 
Multidimensional scaling 
The fundamental objective of multidimensional scaling is to recover the underlying 
spatial structure of the perception process by a configuration in which each stimulus 
(alternative) is represented by a point in such a way that two stimuli that are 
subjectively viewed as being similar are closer together than those that are viewed as 
being less similar. 

The process follows as below: 
 
(1) A dissimilarity matrix is built, ij; the main diagonal is composed of zeros, and the 

matrix is symmetric to the main diagonal. 
(2) From the ij

–matrix it is possible to obtain a matrix of distances between stimuli 
dij. 

(3) Monotonicity is required 
i1j1 < i2j2  di1j1 < di2j2 

 

(4) One defines stress */* TSS  where 



ji

ijij ddS (*))ˆ(* and  e
ijdT* . 

 
 
* dij is the distances of the points which have been fitted from the initial configuration 
 
 

The problem is: minimize */* TS  over all the ijd̂  satisfying the 

hypothesis of monotonicity. 
Green and Wind (1973) in their approach to marketing studies, examine five 

attributes of a project including name, price, package design, and whether or not it is 
guaranteed. In this specific problem, there are 108 combinations of these five 
attributes. Eighteen of these alternatives are chosen and ranked. The computer then 
searches for scale values for each attribute. Scale values are chosen such that when 
added together, the total utility of each combination corresponds to the ranks. No 
measure is given of how much better each alternative is. 

Douglas Carroll (1977) designs an aid to planners in formulating strategies 
and forecasting outcomes for successful implementation of these strategies. He forms 
a matrix of cross impacts of conditional probabilities. He then calculates measures of 
dissimilarities of pairs of events by determining the Euclidean distance measure 
between the rows of the cross impact matrix (causes) and then determines the 
Euclidean distance between columns (effects).  
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Wigand and Barnett (1976) establish a dissimilarity (distance) matrix. The 
row and column headings are a set of concepts where each now defines a concept’s 
relationship to all other concepts. The data are gathered by a series of direct-paired 
comparisons and then treated as points in a spatial manifold (non-Euclidean N 
dimensional space). The location of these points is determined and then the squared 
distances between points minimized. 

Tversky (1967) explores the mathematical structure of polynomial 
measurement theory (satisfied by a data structure if and only if it satisfies the 
irrefiexivity axiom), and interrelates various measurement models within a unified 
conceptual framework leading to some mathematical problems whose solution is 
regarded as useful or illuminating. The theory has no simple empirically testable 
conditions. This approach allows for data analyzed by multidimensional scaling and 
by factorial methods. Performance (express order) between pairs is an ordering of 
distances between them which can be expressed as a polynomial function of the 
coordinates; the theory characterizes embedding this polynomial in a real n-space with 
fixed dimensionality. 

Patrick Rivett (1977) has done work on “the selection of ‘best’ policies from 
a range of alternative possibilities where each policy is assessed in terms of its 
degrees of attainment of a set of objectives”. The method proposed is based on multi-
dimensional scaling techniques as further developed by Kendall for drawing maps 
based on fragmentary information. 

An experimental test of the analytic hierarchy process was conducted by 
Schoemaker and Waid (1978) to compare it with the multiple regression approach 
(MR), the multi-attribute utility approach (MAU) of Keeney and Raiffa (1976), 
and simple direct assessment (DA). The above four methods differ in several ways: 
(1) they require different types of judgments, (2) they require different response 
modes (from ordinal to ratio), and finally, (3) each has domains of application to 
which the others make limited claims. 

In the Schoemaker-Waid experiment, subjects were asked to evaluate 
hypothetical admission candidates, in pairwise comparisons, using four attributes 
only: quantitative SAT, verbal SAT, high school cumulative average, and an index of 
extra-curricular activity. After these prior judgments subjects were asked for further 
judgments from which linear additive representations could be constructed on basis of 
the above four methods. The experiment followed a with-in subject factorial design. 
Thirty-three subjects were asked to make prior judgment among 20 pairs of 
alternatives, indicating direction as well as strength of preference within each pair. 
The linear additive models derived from AHP, MR, MAU, and DA produced 84 
percent, 57 percent, 86 percent, and 84 percent correct predictions for these prior 
judgments, respectively. The Pearson product-moment correlations between the 
predicted and observed strengths of preference were 0.72, 0.19, 0,75, and 0.77, 
respectively. 

These methods were compared only in a limited sense. 
The authors examined only what each method had to offer with respect 

additive, linear representations of multi-attribute preferences. The priorities of 
attributes or criteria determined by the AHP were used as weights of a linear value 
function. This enabled the authors to compare them. 

Although the methods are different, each has advantages over the others. The 
AHP need not assume consistency among preferences, while the construction of a 
utility function by the MAU approach requires a transitive preference relation. Also, 
there is a greater detail of information on pairwise comparisons in the AHP which 
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uses a systems approach, and it is applicable in areas where non-measurable attributes 
exist. 

The MAU possesses some advantages. It has a well-developed methodology 
for handling situations with risk and encompasses utility functions that are not linear 
(i.e., additive linear on each variable, multiplicative, and multilinear), Keeney and 
Raiffa (1976) discuss techniques to estimate the utility function. However, the process 
leads to the choice of one of a few established types of functions. The AHP generates 
functional values of a utility function rather than the function itself. For repetitious 
decision-making situations, having a utility function would be more advantageous. 
However, in practice, the utility function changes rapidly in time and hence has to be 
re-evaluated. Thus, the MAU does not do better operationally than the AHP. The 
former takes too much time and effort, and does not have the benefit as a group 
process that the AHP has been shown to have. The latter can perturb the judgments 
within the hierarchy to get a new set of priorities. With the AHP protocol, this 
represents less trouble than to construct the utility function for each period of time. 

In relation to the MR method, one of the authors points out that “he would 
use the AHP rather than the MR method in any non-repetitive decision-making 
situation such as strategic planning or technology forecasting because these situations 
do not allow an easy derivation of measurable attributes. However, the AHP presents 
one operational problem, it takes time to get judgments in one session and must be 
spread out over a number of sessions. This inconvenience appears to be of no greater 
importance compared with the fact that the MAU provides utility functions, a process 
with which the people may not feel naturally comfortable. Their own preferences may 
later be inconsistent with the utility function. 
 
 
9-8 OTHER COMPARISONS 
 
Hirsch has conducted a thorough analysis of axiomatic methods used to study, 
ranking, both ordinal and cardinal. By synthesizing the information contained in the 
axioms he was able to formulate a minimal set of axioms from which he derived a set 
of about forty analytical conditions for judging the goodness of multicriteria method. 
Presumably, the more desirable conditions a method satisfies, the more preferred it 
should be. 

Three main groups of multicriteria methods are defined in the following way. 
Automatic methods (A+), in which the final ranking of the elements is obtained from 
the initial data, general assumptions, and conditions, and a specified algorithm based 
on an additional set of axioms. There is no interaction with the neither decision-maker 

nor feedback process. Semi-automatic methods (A = ), in which the decision-maker 
can make choices only at specified stages of the method, and according to certain 
rules. There exists specification of feedback processes which brings flexibility and 
adaptivity to the real situation. Non-automatic methods (A–), in which the decision-
maker can make decisions at any moment, and changes in the axioms and 
assumptions are permitted. 

To compare and evaluate multicriteria methods, he defines their major 
structural characteristics. Each characteristic is to be defined on a characteristic scale, 
so that any multicriteria method is identified by the set of its characteristic levels 
measured on each characteristic scale. First of all, he defines measurement scales 
which are: cardinal absolute, cardinal ratio, cardinal interval, ordered metric, ordinal, 
and nominal. Over these measurement scales he defines the characteristic scales 
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which are five; namely, I-characteristic scale, O-characteristic scale, G-characteristic 
scale, D-characteristic scale, and W-characteristic scale. The I-characteristic scale 
shows the degree of specificity required in the measurement scales for the several 
criteria (degree of cardinality). The O-characteristic scale indicates the quality of the 
ranking obtained. The W-characteristic scale gives some information about the 
relative importance of the criteria. The measures of the relative importance of the 
criteria are unidimensional indicators. They might be ordinal or cardinal. However, 
the ordinal measures of relative importance are not sufficient because they cannot be 
used to get a global ranking. Thus, he develops two more different scales based on 
interscale distance comparisons. They are the G and D characteristic scales. Based on 
these scales, he defines some objective measures of performance of multicriteria 
methods: the rational conditions. 

Among the methods he studied are: goal programming, multiple linear 
objectives, and several others of recent vintage. He considered the “preanalytical” 
conditions of: neutrality/independence, ordinality, stability, responsiveness, pareto 
optimality, degree of structure, anonymity, and homogeneity. 

The eigenvalue method does not require strict independence, ordinality, 
anonymity, or homogeneity. However, it has stability, responsiveness, pareto 
optimality, and certain structural properties. It also has a normalized scale. As yet 
Hirsch’s approach does not enable one to say how much better one method is than 
another and in what value system. 
 
REMARK Although we have not made a serious attempt to axiomatize our approach 
which admits intransitivity, we give a short sketch of ideas which need to be 
considered in attempting such axiomatization. Ordinarily axioms are used to give non-
constructive existence types of proofs for utility functions. We have used existing 
mathematical theory to do the same. However, we have made certain assumptions in 
this process. Examples are as follows. 
 
(1) A system can be decomposed into comparability classes (the components) in the 

framework of a directed network. 
(2) Elements in each component may be compared with respect to some or all the 

elements in an adjacent component (the initial vertex of an arc). 
(3) Comparisons can be made in terms of an absolute numerical scale to form ratios. 
(4) The pairwise comparisons utilize reciprocal matrices (optional). 
(5) Intransitivity is allowed and its effect on the consistency of the outcome measured. 
(6) The priority or composite index of dominance of an element is derived through a 

composition or weighting principle. 
(7) Any element which appears in the hierarchy is considered relevant, although its 

priority may be low. It does not make sense to speak of ‘irrelevant alternatives’ 
introduced into the hierarchy to test for independence from them. 
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APPENDIX 

ONE  
 

MATRICES AND EIGENVALUES 
 
 
 
  
INTRODUCTION   
 
In this Appendix we give a brief introduction to the algebra of matrices and eigenvalue 
problems. 
 
 
MATRICES AND LINEAR SYSTEMS OF EQUATIONS 
 
A matrix is a rectangular array of mn numbers arranged in m rows and n columns. The 
number, element, or entry of the matrix A in the ith row and jth column is denoted by aij. 
Thus, we have for the m by n matrix A 
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Generally, we denote the matrix A by (aij) and specify the number of its rows and 

columns. The subscripts i and j refer to the row and column, respectively, in which the 
entry is located. A is said to be a square matrix of order n if m = n.  

The rows and columns of A are called vectors. The matrix A may consist of a 
single row vector or a single column vector. In that case, a single subscript on its entries  
suffices. For example, A   naa ,,1   is a row vector. The diagonal element of a square 

matrix A of order n are aij, i = 1, …, n. A diagonal matrix A has the property that aij = 0, 
for all i and j with i  j. Some of the diagonal elements are nonzero. If also all  aij = 0 for 
all i, A is called the zero or null matrix and is denoted by bold face zero or by bold face 
capital O. The unit of identity matrix I is a diagonal matrix with aij  = 1 for all i. A 
triangular matrix A is a square matrix with aij = 0 for i > j or aij = 0 for i < j. The 
transpose of A = (aij) denoted by AT = (aij) is defined by replacing the element in the i, j 
position of A by the element in the j, i position; that is, we interchange the rows and 
columns of A by rotation around the main diagonal to obtain AT. Since two matrices are 
equal if their corresponding elements are equal, we can define a symmetric matrix by A – 
AT; that is, jiij aa  . We define a skew symmetric matrix by A = – AT; that is, aij = – aji 

with ;0iia  Hermitian by aji = ija ( ija  is the complex conjugate of aij). We also define a 
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reciprocal matrix by aji = 1/aij with 1iia . A = (aij) is said to be positive if aij > 0 for all i 

and j and nonnegative if aij  0. We also have A  B if aij  bij for all i and j. 
There are rules by which matrices A and B can be added, subtracted, multiplied, 

and “divided”. These operations constitute and algebra of matrices, somewhat similar to 
the algebra of ordinary numbers, but care must be taken as all the rules that work with 
ordinary numbers do not work with matrices, which have a more general algebra. Indeed, 
a matrix of order one by one is a single number, called a scalar, and all laws which apply 
to matrices in general must also apply to this special kind of matrix and, hence, to 
ordinary numbers. 

Historically, matrices arose as a shorthand method of listing coefficients of a 
system of equations. A general set of m equations in n unknowns is given by 
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It simplifies the writing of such a system if the coefficients, the array (aij), are 

separated from the variables, the jx . Than the ix , which are repeated in each row, need 

be written only once, thus 
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If we write the jx  as a column then the rule to reassemble the original system is: 

with every aij associate the corresponding xj, i.e., 232 xa  and 2x yield 232 xa . That is, as you 

move across the rows of coefficients, move down the column of x’s for the proper 
association. This simple operation is the basis for the general matrix multiplication rule. 

We may refer to nxxx ,,, 21   as the vector x and myyy ,,, 21   as the vector y. 

Notice that in general the number of elements in x is not the same as that in y. The 
product of an m by n matrix and a p by q matrix is only possible when p = n and result a 
matrix of size m by q. Thus, if q = 1, that is, the second matrix is a vector, the product is 
also a vector. To prevent confusion, keep in mind that subscripted letters refer to 
elements of matrices or vectors and unsubscripted letters refer to a whole matrix or 
vector. 

The origins of matrix addition and multiplication may be related to operations on 
systems of equations. 
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Consider again a system of equations 
 

2221212

2121111

xaxay

xaxay




 

 
and suppose we have a second system of equations 
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If we wish to combine these two systems, since the x’s are what the two systems have in 
common, we would add the first equation of the first set to the first equation of the 
second set, grouping corresponding terms and go to the second equations doing the same, 
and so on. 
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This gives the same result as working with the matrices of coefficients using 

matrix addition. Suppose A is the matrix of coefficients of the first set and B is the matrix 
of coefficients of the second set. Then to add in the way described above, A and B must 
be of the same order. Their sum will also have this order. The rule is A+B = (aij) + (bij) = 
(aij + bij); corresponding elements in the matrices are added. 

 
We have 
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More concretely 
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The rule of addition may be extended to any number of matrices of the same 

order:  A + B+…+ Z = (aij + bij +…+ zij). 
The additive inverse of a matrix A = (aij) is the matrix –A = (–aij) such that  

A + (–A) = 0. 
We have with respect to addition both associativity 

 
(A + B) + C = A + (B + C) 

and commutativity 
A + B = B + A 

 



 245

Suppose we wish to multiply the equations by some constant (or scalar)  
(another trick we used to use in elementary algebra when trying to solve systems of 
equations) as follows 

nn xaxaxay 12121111    

nn xaxaxay 22221212    

 
nnnnnn xaxaxay   2211  

 
then )()( ijij aaA     

 
or, the rule is: to multiply a matrix A by a scalar , multiply every element in A by . 
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Scalar multiplication and addition may now be combined in a rule for the linear 
combination of matrices 
 

A + B + …+ kZ = (aij + bij +…+ kzij) 
 

where , ,…, k are scalars.  
Consider the following set of equations expressing yj, j = 1, 2, 3 in terms of ix , i 

= 1, 2, 3, 4. 
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Then also consider a second set of equations expressing kz , k = 1, 2 in terms of yj 
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We want to express zk in terms of xi, i = 1, 2, 3, 4. We do this by substituting for yj, j = 1, 
2, 3 from the first system into the second. We have kz , k = 1, 2 in terms of ix , i = 1, …, 4 
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Thus, the coefficient of 1x  is obtained by taking sums of products. The products 

are those of the coefficients of ,, 21 yy and 3y , respectively in the expression for 1z , each 

multiplied by the corresponding coefficient of 1x  from the three equations for ,, 21 yy  

and 3y , and then taking the sum. Similarly for the coefficients of 2x  and 3x . For 2z  we 

have .2217 43212 xxxxx   All this can be accomplished by multiplying the matrix 

of coefficients of the first system by those of the second. 
 
Thus we write for these matrices 

 
 y1 y2 y3  x1 x2 x3 x4  x1 x2 x3 x4 










































 22171

11137

1120

2231

1142

511

213

2

1

z

z
 

 zk in terms yj in terms of xi zk in terms of xi 
 of yj 

 
The multiplication is carried out to obtain the coefficients in brackets associated 

with 321 ,, xxx and 4x  for 1z . Thus, the entry in the 1, 1 position in the matrix on the right 

is obtained by multiplying the elements in the first row of the matrix on the left by the 
corresponding elements in the first column and adding, that is 

 
3 × 2 + 1 × 1 + 2 × 0 = 7 

 
The entry 2 in the 2, 3 position is obtained by multiplying the second row of the 

first matrix on the left by the third column of the second matrix on the left. We have 
 

1 × –1 + –1 × 2 + 5 × 1 = 2 
 

In general then, if we multiply matrices A= (aij), B = (bij) to obtain C = (cij), that 
is, AB = C we have for the entry in the i, j position of C 
 





n

k
kjikij bac

1

 

 
Taking the ith row of A, with the jth column of B, multiplying coefficients in 
corresponding positions as indicated by the index k and then adding. It is clear that 
multiplication is meaningful only when A is an m by n matrix and B is an n by q matrix. 

Suppose A and B are as shown below, then C is as indicated on the right. 
 




































2221

1211

3231

2221

1211

232221

131211

cc

cc

bb

bb

bb

aaa

aaa
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where  

31132112111111 bababac   

32132212121112 bababac   

31232122112121 bababac   

31132112111111 bababac   

32232222122122 bababac   

 
Products of matrices satisfy: 
 
(1) The associative law C(BA) = (CB)A. 
(2) The distributive law with respect to addition 
 

C(A + B) = CA + CB,   (C + B)A = CA + BA 
 
(3) Associativity with respect to product by a number: (kA)(kB) = kkAB. Thus if k and k 

are equal to 1 or  –1, we have (–A)B = A(–B) = –AB, (–A)(–B) = AB. 
 

In general, the product of matrices is noncommutative. For example, if 
 




























41

41

41

743

022
BA  

 

AB = 0      but BA =






















281810

281810

281810

 

 
which also shows that AB = 0 with A  0, B  0. Also from AB = AC we have A(B–C) = 0 
but we cannot conclude that either A = 0 or B = C as we have just seen. 

However, sums of matrices satisfy all the properties of sums of numbers. For 
example A + B = A + C implies B = C. 

Multiplying any matrix by a scalar matrix (a diagonal matrix with the same 
constant for all the diagonal elements) is the same as multiplying it by a constant. 
Thus, for example 



























1111110

0

kckbka

kckbka

cba

cba

k

k
 

 
Note that AI = IA = A. The inverse of A, if there is one, is a matrix A–1 such that 

AA–1 = I. We have (AB)–1 = B–1 A–1 and (AB)T = BTAT. Two matrices A and B are called 
orthogonal if AB = 0. The matrices AAT and ATA are symmetric. 
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REMARK  In the matrix product AB = C, we note that cij is formed by using the ith row 
vector of A and the jth column vector of B. In general, we have for the multiplication of 
two vectors  nvvv ,,1   and  nwww ,,1  , called their scalar or dot product and 

denoted by   ,, 2211 nn wvwvwvwv   by multiplying corresponding components 

and adding. The length of a vector  nvvv ,,1   is denoted by v and is defined as v = 
2/122

1 )( nvv   which is euclidean length. Now we know from analytic geometry that 

the angle  between any two lines whose directional numbers are  nvv ,.1   and 

 nww ,.1   satisfies the relation   wvwvwv nn /cos 11   . Thus (v, w) = v w 

cos .  Note that the two vectors (1, 3, 2) and (4, 0, – 2) are orthogonal. 
We can associate with a matrix A of order n a number called its determinant and 

denote it by A or by det (A). It is defined as the algebraic sum of all possible products of 
n of the entries in each of which there is precisely one element from each row and each 
column of A. Now we can arrange the elements in each term in the order of the 
successive columns of A. we would have n choices for the element taken from the first 
column, then n – 1 choices for the element taken from the second column…two choices 
for the element taken from the next to last column and the element of the last column is 
therefore determined. This gives N = n (n – 1) …2 choices. (The product of the first n 
positive integers is called n factorial and represented by n!.) With each choice 
corresponds a different term. Thus, the determinant of order n has n! terms. 

In the algebraic sum, each term is preceded by a plus or a minus sign according 
to the following rule. We arrange the elements of each term in the order of the columns 
and note the sequence of indices of corresponding rows. This sequence may be 
constructed by interchanging pairs of elements in the sequence of natural numbers 1, 2, 
…, n. If the number of interchanges is even (odd), the sign of the term would be positive 
(negative). Thus, the sign is simply (–1)s where s is the number of interchanges. For 
example, the term 133221 aaa  in the determinant of a 3 by 3 matrix A, gives rise to the 

sequence of row indices 2, 3, 1. To put in the form 1, 2, 3, we need two interchanges: (1) 
interchanging 1 and 2 and then interchanging 2 and 3. The two interchanges lead to a 
positive sign for the term. The term 233211 aaa  with row indices 1, 3, 2 needs one 

interchange of the elements 3 and 2 to put in the form 1, 2, 3. Thus, the term receives a 
negative sign. Using this definition, it is easy to see that the determinant of the matrix 
 

111

503

412


  = (2)(0)(–1) + (1)(–5)(1) +  

(4)(3)(–1) – (4)(0)(1) – (1)(3)(–1) – (2)(–5)(–1) = –24 
 

Among the many known properties of determinants are AB = A B; if a row or 
column is multiplied by  the determinant of A is multiplied by ; however, A = n A, 
A = AT; interchanging a row with the corresponding column leaves A unchanged; an 
interchange of two rows or two columns in A changes the sign of A; A is zero if two 
columns or two rows of A are the same or one is a constant multiple of the other; if a 
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column A, e.g., the first, has the form ,,,,,, 2121212121211111  babababa    

,11 nn ba  then A is the sum of two determinants; the first has 12111 ,,, naaa   as it first 

columns and the second has 12111 ,,, nbbb   as its first column, all other columns 

remaining as in A. It follows that a determinant is unchanged if we add to any column a 
constant multiple of another column; if A is triangular nnaaaA ,,2211  . 

The rank of a matrix A is the order of the largest square array (submatrix) whose 
determinant is not equal to zero. A square matrix is nonsingular if its rank is equal to its 
order, i.e., A  0. If A = 0, A is said to be singular. For example, a matrix in which 
every row is a constant multiple of one row is not only singular but has unit rank. 

A systematic way for developing (expanding) a determinant is as follows: The 
minor Dij of the element aij is the determinant of the matrix obtained by striking out the 
ith row and jth column. The cofactor Aij of aij is (–1)1+jDij. 

We have for the expansion of det (A) with respect to the ith row: 
 

A = ai1Ai1 + … + ainAin i = 1, …, n 
 
Similarly for expansion with respect to a column. 

The adjoint of A denoted by adj (A) is the matrix whose, i, jth element is Aji. 
From the above equation we see that Aadj (A) = A  I. It follows that A is invertible (i.e., 
has an inverse) if and only if A  0 (i.e., A is nonsingular), and that A–1 = adj (A)/A in 
this case. 
 

Consider the linear system of equations 
 

nibxa
n

j
ijij ,,1

1




 

 
In matrix notation this system may be written as 

 
Ax = b 

 
where A is the matrix of coefficients 
 













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





mnnn

n

n

aaa

aaa

aaa

A









21

22221

11211

 

 
and x and b are the column vectors 
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
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
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
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
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x
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2

1
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When b  0, i.e., some of the bi are nonzero, the system is called a nonhomogeneous 
system; otherwise, it is called homogeneous. 

If A is nonsingular, it has an inverse A–1 and we can uniquely solve the 
nonhomogeneous system by writing x = A–1b. Cramer’s rule provides a convenient way 
for solving a nonhomogeneous system and is equivalent to the above but involves the use 
of determinants rather than matrix inversion. The ith component xi of the vector x is a 
fraction whose numerator is the determinant of the matrix obtained from A by replacing 
the ith column of A by the column vector b and whose denominator is the determinant of 
A. Note that for the solution of a homogeneous system, the numerator of xi is always 
equal to zero and, hence, unless A is singular so that its determinant vanishes, there is no 
solution other than the trivial one x = (0, 0, …, 0). If A is also zero, we need a 
convenient way to obtain a nonzero solution since Cramer’s rule leads to an 
indeterminant expression (zero over zero) for the xi. There are various ways for obtaining 
the solution in this case. The best known is elimination methods which solve for an 
unknown in one equation and substitute its value in the others. If there are more variables 
than equations, then the surplus of independent variables is assigned arbitrary values to 
be used to determine the remaining (dependent) variables. 

We may adopt the convention that all vectors should be thought of as column 
vectors and use the transpose to indicate the corresponding row vectors. But we 
occasionally use a symbol without a transpose superscript when there is no chance for 
confusion. 

A set of vectors nvv ,,1   are said to be linearly independent if for all numbers 

naaa ,,, 21   the equation 

 
02211  nnvavava   

 
where the right-hand side is the zero vector of n components) implies that 

021  naaa  . 

Thus none of the vectors can be obtained by multiplying others by a constant 
and adding. Otherwise, they are said to be linearly dependent, i.e., the above relation 
holds with not all ia , i = 1, …, n, equal to zero. 

A linear combination of vectors nvvv ,,, 21   is a sum of the form 


n

k
iiva

1

 

where ia  are arbitrary numbers. A linear combination is called a convex combination of 

ia , i = 1, …, n if ia   0, and 



n

i
ia

1

1 . 
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A set of vectors nvvv ,,, 21   is said to form a basis for the space of vectors of n 

components (n-vectors) if 
 
(1) they are linearly independent; 
(2) every vector is a linear combination of them (which is the same as saying that they 

span the space). 
 

In the space of n-vectors, a basis must consist of n vectors. In particular, the set 
of vectors iv ,  i = 1, …, n whose n entries are zero except for the ith entry, which is equal 

to unity, form a basis for the space of n-vectors. 
Note for example that 1v  = (1, 0, 0), 2v  = (0, 1, 0), and 3v  = (0, 0, 1) are linearly 

independent since 
 

     
 321

321332211

,,

,0,00,,00,0,

aaa

aaavavava




 

 
In order for this vector to be the zero vector (0, 0, 0), we must have 

.0,0,0 321  aaa  The vectors 1v v1 = (1, 0), 2v  = (0, 1), 3v  = (1, 1) are linearly 

dependent since the requirement that 
 

 3231332211 , aaaavavava   be (0, 0) 

 
gives 0,0 3231  aaaa  which are satisfied by ,, 1231 aaaa   which need not 

be all zero. To find the coefficients in nnvavav  11  we must solve a system of 

linear equations. For example, (2, 3) = 1a (1, 7) + 2a (4, 2) leads to the two equation 

21 42 aa   and .273 21 aa   
The set of all vectors that are convex combinations of n linearly independent 

vectors (unit vectors) is called an n-simplex (the unit n-simplex). 
Since the rows and columns of a matrix are vectors, it turns out that the rank of a 

matrix is the maximum number of linearly independent rows which it has. This is the 
same as the maximum number of linearly independent columns. In a matrix of rank one, 
every row (or column) vector is a constant multiple of a single row (or column). 

Two vectors 1v  and 2v  (like two matrices) are orthogonal if 21vv = 0 where 1v  is 

written as a row vector and 2v  is a column vector. There is a standard procedure for 
transforming a set of n linearly independent vectors to a set of vectors that are orthogonal 
in pairs. If the original set forms a basis, so will the new set and it is called an orthogonal 
basis. 
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CHARACTERISTIC EQUATION: EIGENVALUES AND EIGENVECTORS 
 
A proper vector (characteristic vector or eigenvector) of A is a non-null vector w such 
that wAw   or  A/1  transforms w to w, i.e., leaves w fixed. The values of  
corresponding to such a w are called the proper values (characteristic values or 
eigenvalues) of A. Thus, w would be a proper vector or eigenvector if it is a nontrivial 
(i.e., nonzero) solution of   0 wIA   for some number . The components of w 
constitute a set of solutions of a homogeneous linear system with matrix .IA   Such a 

system, in fact, has the trivial solution 01  nww   where  nwww ,,1  . But in 

order that there be a nontrivial solution, the matrix IA   must be singular, i.e., its 

determinant IA   should be zero. This determinant is an nth degree polynominal in . 

It has the form  nnn a 11
1     det (A) and is called the characteristic polynomial 

of A. The condition that the determinant should equal zero leads to an nth degree equation 
called the characteristic equation of A which, by the Hamilton and Cayley theorem is 
identically zero if  is replaced by A, thus yielding a matrix equation. The roots i i = 1, 
…, n, of the characteristic equation IA  = 0 are the desired eigenvalues. The 

fundamental theorem of algebra assures the existence of n roots for a polynominal 
equation of degree n. The eigenvectors are obtained by solving the corresponding 
systems of equations, .iii vAv   Care must be exercised in getting all the eigenvectors 

when there are multiple roots. 
 

Note that 
 

 


n

i
iiaa

1
1  trace (A) 

 
and that the roots of the characteristic equation as roots of an nth degree equation satisfy 
 





n

i
i a

1
1  trace (A) 

and 





n

i

A
1

1  

 
We can see this expanding the factorization      n  21 of the 

characteristic polynomial. We note that the characteristic equation may have multiple 
roots and, hence, the total number of distinct roots may be less than n. Obviously, a 

multiple root i of multiplicity k would appear in the factorization in the form   .k
i   

For a simple root k = 1.  
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From Aw = w and A = A since  is a constant, we have A2w = A(Aw) = 
A(w) = Aw = (w) = 2w. Thus, 2 is an eigenvalues of A2 and similarly k is an 
eigenvalue of Ak. Thus, trace k

n
kkA  1 . 

 
Example  Consider the matrix 
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Since the characteristic equation is a quadratic we solve it by using the 

well-known quadratic formula for the roots of such an equation. We have for the 
eigenvalues 
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and to obtain the eigenvector corresponding to 1, we write wAw 1 , that is  
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or  

1121 2 www   
 

that is 
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1
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ww
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Since the matrix IA 1  is singular there is dependence between its rows and 
hence the second equation yields no new information. Thus the eigenvector w is 
obtained by assigning an arbitrary value to 2w  and calculating 1w  from the above 

relation. We assign 2w  the value 1. We then have 
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









 1,
1

2

1
w  

 
We can normalize w by making its coefficients sum to unity. We do this by 
dividing each coefficient by the sum 21 ww   which is    .11 11    The 
resulting normalized vector is 
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







 1
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,
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2

1

1

1 
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Since multiplying by a constant does not affect the solution of Aw = w, we shall 
think of  the eigenvectors w to be always given in normalized form. We may 
similarly obtain the eigenvector corresponding to 2 . The eigenvalues as the roots 
of any polynomial equation are obtained by standard numerical methods of which 
there are several. There are nowadays canned computer programs for getting these 
roots. When the equation is the characteristic equation of a matrix, there are 
computer programs which, knowing the matrix, also find the eigenvectors. 

The eigenvalues of a matrix, as roots of its characteristic equation, may be 
complex numbers and, hence, would occur in pairs as complex conjugates. Recall 
that a complex number is of the form a + ib where i = –1 and a and b are real. 
The modulus of such a number is denoted by a + ib and is equal to (a2 + b2)1/2. If 
the matrix has real entries and is symmetric, all its eigenvalues are real. The 
eigenvectors corresponding to different eigenvalues are orthogonal. The same 
property also applies to a Hermitian matrix. A and AT have the same eigenvalues 
but generally not the same eigenvectors. 

 
The following theorem (see Franklin, 1968) may be adapted to 

 

ij
j

i
ij w

w
a   

 
by using a continuous transformation such as a logarithmic function. It asserts that the 
eigenvalues of a matrix depend continuously on its coefficients (the same as proving that 
the roots of a polynomial depend continuously on its coefficients). 
 

Theorem  If an arbitrary matrix A = (aij) has the eigenvalues n ,,, 21  where 

the multiplicity of j is mj with nm
s

j
j 

1

, then given  > 0 sufficiently small, 

there is a  =  () > 0 such that if aij + ij – aij = ij   for i, j = 1, …, n, the 

matrix B = (aij + ij) has exactly mj eigenvalues in the circle   j  for each j 

= 1, …, s where 1, …, n are the eigenvalues of B. 
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PROOF  Define f(, B) = det (I, B). 

Let 2/10   min ji    1  i < j  s and let .0   The circles 

sjC jj ,,1,:    are disjoint. Let rj = min  f(, A) for   on Cj. Note 

that min  f(, A) is defined because f is a continuous function of . Also rj > 0 
since the roots of f (, A) = 0 are the centers of the circles. 

The determinant f (, B) is a continuous function of the 1 + n2 variables 
and njia ijij ,,1,      njia ijij ,,1,    and hence for some  > 0,  f (, 

B)  0 for  on any Cj, j = 1, …, s if njiij ,,1,,   . From the theory of 

functions of a complex variable, the number mj of roots  of f (, B) = 0 which lie 
inside Cj is given by 
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cj
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which since f (, B)  0 is a continuous function of the 1 + n2 variables in 

.,,1,,, njiijj    In particular it is a continuous function of 

ijija   with . ij  

Now for B = A we have by assumption nj(A) = mj, j = 1, …, S. Since the 
integral is continuous it cannot jump from nj(A) to nj(B) and the two must be 
equal and have the common value mj, j = 1, …, s for all B with 

 .,,1, njiaa ijijij    

 
There are various ways of estimating max and here is a well-known one. 
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For example, we find for a 3 × 3 reciprocal matrix the following 
 

trace 









2312

13

13

23124 44
193

aa

a

a

aa
A  

 
Similar calculation for a 4 × 4 reciprocal matrix yields 
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Note that terms tend to compensate since a coefficient which is the numerator of 

one term also appears in the denominator of the next one. Thus an increase in this 
coefficient increases one term and decreases the other. Generally this is not true for a 
non-reciprocal matrix. 

One often encounters functions of a matrix A such as powers and exponentials. 
Meaning has been given to such functions. We have the following theorem in this field 
due to Sylvester (see Frazer, Duncan, and Collar, 1955). 
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Here k is the number of distinct characteristic values of the matrix A, mi is the multiplicity 
of the ith root    i

m
i f  ,  is the mth-order formal derivative of f evaluated at i , and the  

 iZ   are complete orthogonal idempotent matrices of the matrix A; that is, they have the 

properties 
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where I and 0 are the identity and null matrices, respectively. 

When the characteristic values are all distinct, one has, for an nth-order matrix A 
(Hildebrand, 1952) 
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To illustrate how these are obtained when f is a polynomial in A, note from the 
nth-degree polynomial I – A = 0 that An can be expressed in terms of lower powers of A 
and hence that f can always be reduced to a polynomial of degree not exceeding n – 1. If 
we write 
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and multiply on the right successively by iv , i = 1, …, n the characteristic vector of i 

and use the fact that ,iii vAv   and hence that     ,iii vfvAf   we have 
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which gives the desired result. 

If f(A) = eAt and the characteristic values of A are distinct, we have the spectral 
resolution of f(A) given by 
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The case of multiple characteristic roots is derived from the confluent form of 

Sylvester’s theorem. If we write, for brevity 
 





n

i
iTAf

1

)()(  

 
where k is the number of distinct roots, then 
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Here im  refers to the multiplicity of the root i , and 
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gives the mth-order derivative of F, and 
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Note, for example, that 
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Consider the system 
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or simply 
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Using Sylvester’s formula with 2,2 21    we have  
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and use it to obtain the solution of the system. Similarly we can show that if  
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APPENDIX 

TWO  
 

SOME CONCEPTS FROM GRAPH THEORY 
 
 
 
 
 
DEFINITIONS  
 
A graph is a set of points V called vertices or nodes and a set of simple curves E called 
edges with a rule (of incidence) which associates each edge with vertices which are called 
its end points. The vertices are said to be incident with the edge. An open edge is incident 
with precisely two distinct vertices. A closed edge (called a loop) is incident with 
precisely one vertex and hence its end points coincide. No edges have points in common 
other than vertices. 

In Fig. A-l, 1v  and 2v  are examples of vertices; 1e  is a loop whose end point is 

5v ; 2e  is an open edge whose end points are 2v  and 3v . 

Two edges with a common vertex or two vertices that are the end points of an 
edge are said to be adjacent. A vertex is isolated if it is not incident with any edge. We 
denote a graph by G = (V, E).  

A subgraph of a graph G is a subset 1V  of the set of vertices V and a subset 1E of 
the set of edges E with the same incidence between vertices and edges as in G. 

A graph is called simple if it has neither loops nor parallel edges, i.e., multiple 
edges between pairs of vertices. Most of the time we shall be concerned with simple 
graphs, but since we have allowed for loops and parallel edges in our definition of graphs 
we will usually make it clear when we are considering nonsimple graphs 

With each edge, one may associate a direction or orientation indicated by an 
arrow. The resulting graph is then called a directed graph and its edges are called arcs. 
(See Fig. A-2.) A directed graph is denoted by D = (V, A). 
 
 
 
  
 
 
 
 
 
 
   
      

Figure A-1 
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The number of edges incident with a vertex v V is called the degree of the 
vertex and is denoted by d(v}. We denote by d–(v) the number of arcs directed toward v, 
and by d+{v) the number of arcs directed away from v. A loop incident with a vertex is 
counted twice in determining the degree. For an isolated vertex we have d(v) = 0. 

For a graph G = (V, E) we denote the number of vertices and the number of edges 
by V and E, respectively, and V is called the order of the graph. The graph in Fig. A-3 
has V = 7 and E = 10. A graph is called finite if both V and E are finite, and infinite if 
either is infinite. We shall be concerned exclusively with finite graphs. In the graph of 
Fig. A-3, the degree of 1v  is 5; 7v  is isolated. 

It is easy to show that in every graph the number of vertices of odd degree is 

even. To see this note that 
Vv

vd )(  = 2E since each edge is counted twice. If we denote 

by 0V  and eV  the sets of vertices having odd and even degrees, respectively, then we 

obtain the result by observing that 
Vev

vd )( + 
Vov

vd )( = 
Vv

vd )( = 2E and hence 


Vev

vd )( is an even number. This can only be if the sum has an even number of terms. 

A sequence of n edges nee ,,1   in a graph G is called a walk or edge 

progression if there exists an appropriate sequence of n + 1 (not necessarily distinct) 
vertices nvvv ,,, 10   such that ei is incident with (vi–1 and vi), i = 1, …, n. The walk is 

closed if nvv 0  and open otherwise. If e
i  ej for all i and j, i  j, the walk is called a 

tour or a chain. A closed chain is called a circuit. If all the vertices are distinct, a walk is 
called a simple chain while, if nvv 0  and all other vertices are distinct, we have a simple 

circuit provided that n  3. An example of a simple chain is given by the edge sequence 
          322551162743 ,,,,,,,,,, vvvvvvvveeee   in Fig. A-1. Here we have replaced 

each edge in the sequence by the pair of vertices that are its end points as they succeed 
each  
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Figure A-4 
 
 
other in the walk .,,,, 32516 vvvvv  Similar definitions may be given for directed graphs 

giving attention to the direction on each arc. There we speak of arc progressions, paths 
and cycles, and simple paths and simple cycles. 

A graph is said to be connected (strongly connected) in the undirected (directed) 
sense if there is a simple chain (path) between any pair of vertices. A graph of n + 1 
vertices is n-tuply connected if the removal of n –1 or less vertices does not disconnect it. 
Two chains are said to be disjoint if they have no vertices in common, except perhaps for 
their end points. 

A component C of a graph G is a connected subgraph which is maximal (i.e., 
every vertex that is adjacent to a vertex in C is also in C and all edges of G incident with 
vertices in C are also in C). 

A subtree is a connected subgraph which has no circuits. A spanning tree is a 
(maximal) subtree which contains all the vertices of the graph. An edge of the graph that 
is not in the tree is called a chord. An edge of the graph that is in the tree is known as a 
branch. When a chord is added to a spanning tree, the result is a circuit called a 
fundamental circuit. Figure A-4 shows a spanning tree for a directed graph. The tree is 
rooted at v0, from which all paths that are in the tree begin. 

A special type of circuit in a graph, important for practical applications, is 
named after the famous Irish mathematician William Rowan Hamilton (1805–65). We 
call a circuit which passes through every vertex of the graph once and only once a 
Hamiltonian circuit. By contrast, the name of the Swiss mathematician Leonard Euler 
(1707–83) is associated with a Eulerian graph in which the edges form a chain with each 
edge of the graph included in the chain once and only once. The chain may be open or it 
may form a circuit. 

Two graphs G = (V, E) and G = (V, E) are isomorphic to each other if there 
exists a 1 to 1 correspondence between V and V and between E and E which preserves 
incidences. For instance, the two graphs shown in Fig. A-5 are isomorphic. 
A simple graph G = (V, E) having V = n and such that every pair of vertices is joined by 
an edge is called a complete graph on n vertices. It is easily verified that a complete 
graph has n(n –1)/2 edges. Since any two complete graphs having the same number of 
vertices are isomorphic we speak of the complete graph on n vertices.  
 
 
 
 

0v  
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Figure A-5 
 
 
 
 
 
 
 
 
 
 
 
 

Figure A-6 
 
 

A graph is called bipartite if its vertices can be partitioned into two disjoint sets 
such that the only edges in the graph are those which connect vertices from one set to 
those in the other. (See Fig. A-6.) 
 
 
Discussion 
 
An important elementary concept associated with a graph G on n vertices is that of 
connectedness. Intrinsically, much of algorithmic graph theory is concerned with 
connectivity, its redundancy and even absence in the graph. 

A graph is not connected (or disconnected) when the set of vertices V can be 
separated into two sets 1V and 2V with no edge joining a vertex in 1V  to a vertex in 2V , 
otherwise it is said to be connected. Although two vertices may not be directly connected 
by an edge, it may be possible to reach one of them from the other by a simple chain. If 
there is such a chain connecting every pair of vertices, then the graph is said to be 
connected. Sometimes people prefer to use the first definition, but more frequently the 
equivalent second definition is used. In fact, the second definition is much richer as it 
opens up the entire area of problems of reachability or traceability of a graph or of 
subgraphs of that graph. For example, we can begin to ask for more. Can we start at a 
vertex and travel or trace the edges of the graph sequentially without repetition? Can we 
do so and still terminate at the starting vertex? Can we, by starting at a vertex, trace a 

1v 2v

3v

4v5v

1v

2v

3v
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simple chain through all the vertices with or without returning to our initial vertex? Can 
we do so if we considered only subgraphs of n – 1 vertices? 

Another type of question is concerned with how much connectivity there is in a 
graph. There are two ways to look at this type of question: (1) through the edges of the 
graph; and (2) through its vertices. A graph may be disconnected by the removal of 
several edges taken together. A minimum collection of such edges is known as a cut set 
and the smallest number of edges in a cut set is called the degree of connectivity of the 
graph. A tree is connected of degree one. Clearly a tree is the weakest type of connected 
graph. On the other hand, in a circuit, the removal of an edge leaves a connected graph 
(in fact a tree) behind. 

In terms of edge connectivity, how much connectivity there is in a graph may be 
measured by the minimum number of chains connecting any pair of vertices or by the 
existence of simple circuits of different sizes. Chains and circuits on the one hand and cut 
sets on the other are two complementary ways of studying connectedness and the lack of 
it. Even questions of planarity (embedding the graph in the plane without intersections of 
edges at points that are not vertices), and nonplanarity of graphs are related to 
connectivity. By reducing the number of edges of a nonplanar graph, it can be made 
planar. 

There are also two ways to look at how vertices disconnect a graph. The first is 
associated with the concept of the degree of a vertex. For example, if in a tree we have a 
vertex of degree two and we remove it together with its incident edges, the remaining 
graph is disconnected. On the other hand, if the graph is a simple circuit and hence every 
vertex has degree two, the removal of a vertex does not disconnect the graph. It seems 
reasonable that the higher the degrees of the vertices, the stronger the connectivity should 
be. But this type of statement is too general and needs to be made specific in the context 
of a particular problem. 

A vertex of a graph is called a point of articulation or cut-vertex if its removal 
disconnects or separates the graph. The multiplicity of a cut-vertex is the number of 
components which result from its deletion. There may be more than one vertex which is a 
point of articulation. For example, in Fig. A-1, 2v  and 5v  are points of articulation. 

However, 6v  is not. The collection of articulation points forms a set of articulation 

vertices which, in the context of communication networks, may be regarded as the 
vulnerability set of the graph. Of course, a graph may have no point of articulation (such 
a graph is said to be nonseparable) but the removal of  k vertices together disconnects it. 
Such a set is known as articulation set of order k. 

A graph is k-connected, 0  k < n if the removal of k – 1 vertices or less does not 
disconnect it. Any pair of vertices of such a graph can be connected by k disjoint chains 
(no two of which have vertices in common). A graph which has no articulation set of 
order k is called k-irreducible. Otherwise, it is known as k-reducible. 

So far we have been speaking of a general undirected graph. Connectivity 
questions are somewhat more complicated if a direction is assigned to the edges of the 
graph. Here a graph may be connected in the undirected sense, yet be only weakly 
connected in the directed sense. Thus, there may be a path from one vertex to another, but 
not conversely; i.e., it is not strongly connected. It is clear that cycles play an important 
role in strongly connected graphs. 
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Conditions for rank preservation in a positive reciprocal matrix that is inconsistent 
are provided. Three methods of deriving ratio estimates are examined: the eigenvalue, the 
logarithmic least squares, and the least squares methods. It is shown that only the principal 
eigenvector directly deals with the question of inconsistency and captures the rank order 
inherent in the inconsistent data.   1984 Academic Press, Inc. 
 
 
 

1. INTRODUCTION 
 

In the last few years several authors have advocated particular best ways for 
approximating a positive reciprocal matrix   ,/1, ijjiij aaaA  by a vector 

 nxxx ,,1  such that the matrix of ratios  ji xx /  is a best approximation to A in 

some sense. This surge or interest has arisen out of the many applications that have 
been made of the Analytic Hierarchy Process for decisions in complex situations 
(Saaty, 1980, 1982). There are infinitely many possible ways to generate 
approximations for A. Three most widely used ones which have been strongly 
advocated are: the method of least squares (LSM) (Cogger and Yu, 1983; Jensen, 
1983: McMeekin, 1979) which finds x by minimizing the Euclidean metric 
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the method of logarithmic least squares (LLSM) (de Grann, 1980: Fichtner, 1983: 
Williams & Crawford, 1980) which minimizes 
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and the eigenvector method (EM) (Saaty, 1977, 1980, 1982) which solves the problem 
Ax = max x, where max is the principal eigenvalue of A. Because A is reciprocal, 
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nmax . A metric has been recently advanced by Fitchner (1983), which on 

minimization yields the EM solution. 
Obviously, all three methods coincide in the resulting solution when A is a 

consistent matrix, i.e., it satisfies the relation ikjkij aaa  . Simply stated, this 

condition requires that the entire matrix be generated by forming ratios of the 
elements of any row or any spanning tree. 

EM yields two algebraically related solutions -the right and left eigenvectors. 
The latter is the normalized reciprocal of the former when A is consistent or when n = 
3 but A is inconsistent. In general, when A is inconsistent this relationship does not 
hold. It is the right eigenvector which corresponds to the LSM and LLSM solutions. 

The real problem arises when A is not consistent. What has happened so far 
is that the advocates of each of these methods have taken a large number of examples 
and shown that the solutions produced by their method are best because they satisfy 
their criterion. Of course they would; after all, they were constructed to satisfy the 
criterion and others would obviously not satisfy that one, but would in turn satisfy 
their own criterion. 

Regrettably for the debate, solutions produced by the other methods, 
although they do not satisfy the particular criterion, are often close to satisfying it thus 
fanning the fire under the controversy “really which method is best?” To answer this 
question people have gone after the criteria themselves and attempted to give some 
kind of palatability and justification for the one they advocate, at the same time 
attempting to make the others look bad. For example, the LSM criterion is based on 
the Euclidean metric and what can be more reasonable than using what people have 
used for a very, very long time. Despite the fact that non-Euclidean geometries have 
been a fact of life for nearly two centuries, there are still those who believe that there 
is something immutable (or holy) about the Euclidean metric. 

But the problem is deeper than the justification of a best metric. When the 
matrix A is not consistent, this inconsistency must be taken into consideration in the 
construction of the criterion itself. A criterion that does not account for inconsistency 
is incomplete. Granted that none of the methods produces a different answer when A 
is consistent, why should any of them be lifted above the others unless it has a way to 
cope with inconsistency? 

Let us now say what effect inconsistency has on the vector x. Inconsistency 
gives rise to the idea of rank reversals. For example, with consistency all the methods 
produce a result like ba xx   but on slight perturbation to an inconsistent matrix some 

methods would produce ba xx   while others produce ba xx   or  ba xx  . 

It should be noted that inconsistencies in judgments mask the true ranking. 
Still as we shall see later a method which considers the overall relative ranking of an 
alternative with respect to all others by taking into account the amount of 
inconsistency should yield the true ranking inherent in the inconsistent data. 

In decision problems rank reversal can have a serious effect as one solution 
that strategy a is preferred to strategy b while another says the opposite. How does 
one account for this anomaly? 

It is clear that rank order is a structural factor inherent in the data and is not 
an arbitrary criterion chosen for accuracy, or because or what people have been doing 
historically. In the next section we intend to analyze this important problem hoping to 
cast light on which way the debate should go. 
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2. RANK PRESERVATION 
 

Let w, u, and v be the solution vectors obtained by EM, LLSM, and LSM, 
respectively. By rank order we mean the order relationship between ix and jx . How 

should this relationship be interpreted in terms of what we known about A? 
Let us assume that A is inconsistent and hence its columns may yield 

different rankings. Generally on observing that 1ija  one might expect ji xx   to 

hold. But this cannot always be the case. Another interesting observation is that if row 
i dominates row j, then the methods should preserve rank. This turns out to be true. 
Still other intuitive guesses have to do with taking the arithmetic mean or the 
geometric mean (LLSM) of the rows. Rank preservation can be easily shown to break 
down under these assumptions. 

 
DEFINITION. A method of solution is said to preserve rank weakly if 1ija  

implies ji xx  , where x = w, u, or v. 

 
It is clear that if A is consistent then EM, LLSM, and LSM preserve rank 

weakly. Note that with consistency ji xx   implies 1ija . 

 
DEFINITION. A method of solution is said to preserve rank strongly if 

jkik aa   for all k implies ji xx  .  

The next theorem shows the sufficiency of row dominance without requiring 
consistency. 

 
THEOREM 1 (Row dominance). EM, LLSM, and LSM preserve rank  

strongly.1 
 
Proof.   For EM we have 
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which yields ji ww  . For LLSM we have 
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To prove the theorem for LSM we use the following condition whose proof 

can be verified by expansion: 

                                                            
1We are indebted to Robert E. Jensen for the proof for LSM 
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If a  b > and 0 < s  1, then (a - s)2 + (b – t)2   (a – t)2 + (b – s)2. Now 
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v

v
a

v

v
a  

 


 






























jik i

k
ki

k

i
jk v

v
a

v

v
a

.
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
 
































ijk j

k
kj

k

i
jk v

v
a

v

v
a

.

22

 

 + (terms not involving iv  and jv ). 

 
Since jkij aa   for all k, suppose that .// kjki vvvv   Let svvbaaa kijkik  /,,   

and .1/ kj vv  Then from the above condition we have 

 
2222






































k

i
jk

k

j
ik

k

j
jk

k

i
ik v

v
a

v

v
a

v

v
a

v

v
a for all k. 

 
 
Similarly, let baki  , tvvaa ikhj  /,  and ./ svv jk   Then from the condition we 

have 
2222










































i

k
kj

j

k
ki

j

k
kj

i

k
ki

v

v
a

v

v
a

v

v
a

v

v
a     for all k. 

 
Therefore, if  ji vv   we cannot increase (1) by putting ij vv   and ji vv  . So if 

ji vv   we cannot have (at least) a unique minimum, and the result follows. 

Note that with consistency ji xx   implies jkik aa   for all k. This follows 

by writing jiij xxa / . 

 
COROLLARY 1. For all k, jkik aa  , implies .1ija   

 
Proof.  Put k = j obtaining jjij aa  . 

 
COROLLARY 2.  Let .1ija  If jkijik aaa / ,  k = 1, 2, …, n. then ji xx  . 

 
COROLLARY 3.  If 1ija  and ijikjk aaa /   for all k, then ij xx  . 

 
The following is a generalization of  Theorem 1 to products. 
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THEOREM 2. ji uu    if and only if   
n
k 1   n

kika 1 jka . 

 
THEOREM 3. Let n = 3. For an arbitrary positive reciprocal matrix A, 

ji ww   if and only if   
n
k 1   n

kika 1 jka . 

 
Proof.  For n = 3, w = u. Since the components of u are the geometric means 

of the rows, the result follows. 
 

DEFINITION. A positive reciprocal matrix A is ordinally transitive if for 
each i = 1, 2,…, n. ,ikij aa   for some j and k, implies .1jka  

 
Hence, A is ordinally intransitive if ikij aa  implies 1jka  for some i, j or k. 

 
THEOREM 4. In an ordinally transitive reciprocal matrix A, given i and i’, 

either kiik aa '  for all k, or kiik aa    for all k. 

 
Proof.   Consider rows i and i' and let k be the subset of column indices for 

which kiik aa '  and let k' be the remaining subset of indices for which .''' kiik aa   

Because A is ordinally transitive, we have kiki aa '  implies that 1'' iia  and 

''' ikik aa   implies that 1' iia  or 1' iia  which is absurd. 

 
The following relates ordinal transitivity to rank preservation. 
 
COROLLARY.   If A is ordinally transitive then EM, LLSM, and LSM 

preserve rank strongly. 
 
Now assume that for some i and j, neither jkik aa  nor jkik aa  for all k. 

Thus A is inconsistent. It follows that  jjij aa  1  need not imply ji xx  . However, 

it turns out that )()( m
jj

m
ij aa  does, where  m

ija is the (i, j) entry of Am. 

We now develop a necessary and sufficient condition for rank preservation. 
For emphasis, recall from graph theory that an element )(m

ija of Am gives the 

cumulative dominance of the ith element over the jth element along all chains of 
length m. That precisely how one measures the consistency relation between that row 
and each column. In fact when A is consistent we have from Am = nm–1 A that the 
entries of An and those of A differ by a constant thus maintaining consistency. 

In general. consider Am =  )(m
ija  where 

 

   
  




n

i

n

i

n

i
jiiiii

m
ij

m

m
aaaa

1 1 11 2 1

1211
  

 
THEOREM 5.  For a positive reciprocal matrix A 
 

 

 

 

 
,limlim

11  






n

i

m
is

m
is

xmn

i

m
ik

m
ik

xm a

a

a

a
  k, s = 1, 2, , n 
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Proof.  Let B = NAN–1 be the Jordan canonical form of A given by 
 





















rB

B
B


2

1

 

 
where max1   , and pBp .  = 2, 3,…, r is the pp nn  Jordan block defined 

by 
 

























p

p

p

p

B








1000

0010

0001

0000







 

 
where rpp ,,2.   are distinct eigenvalues with multiplicities rnn ,,2   

respectively, and  


r

p p nn
2

1 . We have A = N –1 BN and Am = N –1 BmB, where 

Bm is given by 
 























m
r

m

m

B

B
B







00

00

00

2

1

 

 
Let us denote N –1  D = (dij) and N = (nij). We have 

 




































m
nn

m
n

m
n

m
n

mm

m
n

mm

mm

dndndn

dndndn

dndndn

NDBA

11111121111

12111211212111

11111111211111

.,

.,

.,






 

 
Let e = (1, 1,…, 1)T = ,11 rr wawa   where wr is the principal right eigenvector 

corresponding r . We have 
 

Tm
r

TmT wawae 11111     

     







  

 

n

i

n

i

m
in

m
i dndn

1 1
1111111 ,    
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Given two columns of A, k and s we have 
 

 



 n

i

m
ik

m
ik

n

t

m
ik

m
ik

dn

dn

a

a

1 111

111

1

)(

)(

   and 
 


 n

i is

m
is

n

i

m
is

m
is

dn

dn

a

a

1 11

111

1

)(

)(

 

 
Since both numerators and denominators are polynomials in pm

p.  = 1, 2, …, r. and 

,1.max1  pp  we have for the ith entries of two arbitrary columns k and s 

 

   






n

i i

i
n

i

m
is

m
is

smr

i

m
ik

m
ik

sm d

d

a

a

a

a

1 1

1

11

limlim  

 
 

DEFINITION. A positive matrix A is said to be m-dominant if there is an mo 
such that for m  mo either )()( m

ik
m

ik aa  or )()( m
ik

m
ik aa   for all k and for any pair i and i’. 

 
 
COROLLARY. A positive reciprocal matrix is asymptotically m-dominant.2 
 
Proof.  We have from Theorem 5 that the normalized columns of Am are the 

same in the limit. Since the elements in each row are identical, the result follows by 
choosing mo to be the maximum of its values for each pair of rows. 

 
We now show that for an inconsistent matrix A, rank is determined in terms 

of the integers of A. To do this we demonstrate that there is a method of estimating x 
which coincides with the normalized limiting columns of A. This method is precisely 
EM. 

 

THEOREM 6.       
n

i

m
ik

m
ikm aa

1
/lim  = niwi ,,2,1,    

 

Proof.  From   wAeA mm
m  /lim , we have  m

mi Aw /1lim   

  

n

k

m
ika

1
. Multiplying and dividing )(m

ika by   

n

k

m
ika

1
 we have on distributing the 

limit with respect to the finite sum 
 




























































m

n

i

m
ik

m

n

k
n

i

m
ik

m
ik

m

n

i

m
ik

n

i

m
ik

m

m
ik

m

n

k
i

A

a

a

a

a

a

A

a
w

1

)(

`
1

)(

)(

1

)(

1

)()(

1

limlim

lim

 

                                                            
2 We thank Gordon B. Crawford for pointing out the correct exact statement of this result 
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By Theorem 5  mlim   

n

i

m
ik

m
ik aa

1

)()( /  is the same constant for all k hence we have 

 












 








 m

n

i

m
ik

m

n

k
n

i

m
ik

m
ik

m
i A

a

a

a
w 1

)(

`
1

)(

)(

limlim  

 

Since Am =   

n

i

n

k

m
ika

1 1

)( , the proof is complete. 

 
There is a natural way to derive the rank order of a set of alternatives from a 

pairwise comparison matrix A. The rank order of each alternative is the relative 
proportion of its dominance over the other alternatives. This is obtained by adding the 
elements in each row in A and dividing by the total. However, A only captures the 
dominance of one alternative over each other in one step. But an alternative can 
dominate a-second by first dominating a third alternatives and then the third 
dominates the second. Thus, the first alternative dominates the second in two steps 
(along a path of length two). It is known that the result for dominance in two steps is 
obtained by squaring the pairwise comparison matrix. Similarly dominance can occur 
in three steps, four steps and so on, the value of each obtained by raising the matrix to 
the corresponding power. The rank order of an alternative is the average of the 
relative values for dominance in one step, two steps, and so on. We show below that 
when we take this infinite series of dominance along paths of length one, two, three, 
and so on and calculate its limiting value we obtain precisely the principal right 
eigenvector of the matrix A. This demonstrates that the eigenvector is derived 
deductively to obtain a relative scale among n alternatives from their matrix of 
pairwise comparisons. It is the desired solution because it preserves rank order rather 
than a convenient criterion introduced for minimization purposes. 
 

THEOREM 7 (Saaty). The relative dominance of an alternative is given by 
the solution of the eigenvalue problem .max wAw   

 
Proof.   The relative dominance of an alternative along all paths of length 

mk   is given by 
 




m

k
kT

k

eAe

eA

m 1

.
1

 

 
Let 

eAe

eA
s

kT

k

k   

 
and 

.
1

1




m

k
km s

m
l  
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Note that  mm l,lim . This is a consequence of a theorem due to G. H. Hardy 

[l949] which gives necessary and sufficient conditions for a transformation of a 
convergent sequence to also be convergent. Let T be such a transformation mapping. 
 

  





1

,1 .,...,
k

kkmmm sctss  

 
T is regular if stm   as m  whenever ssk   as k  . It is known (Hardy, 

1949) that T is regular if and only if the following conditions hold: 
 

(1) 




1 ,k km Hc  (independent of m) 

(2) kkmc ,  for each k, when m  . 

(3) 

1 ,k kmc when m  . 

(4) k  = 0 for each k. 

(5)   = 1. 
 
Here, 
 






0

/1
,

m
c km  

Thus, we have 
 

(1) .1,/1
1 1, 

 


k

m

kkm mc  

(2) 0/1,  mc km  as m  . Hence (4) k  = 0 for each k. 

(3)  






m

kk km mc
11 , 1)/1( and hence (5)   =1. 

 
It follows that T is regular. Since ks  weAeeA kTk ,  as k   (Saaty, 1980), 

where w is the principal right eigenvector of A, we have 
 





m

k
kT

k

m w
eAe

eA

m
t

1

1
   as m   

 
In input/output analysis in economics multipliers are traced by raising the 

input/output matrix to higher and higher powers and taking their sums to obtain the 
overall impact of each sector of the economy on every other sector. 

Still another argument can be constructed from Theorem 5 because for large 
m the normalized columns of Am are the same and converge to the eigenvector. 
 
 

for 1  k  m 

for k   m
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3. COUNTEREXAMPLES 

 
Here we give some examples where LLSM and LSM reverse rank although it 

is intuitively obvious that rank reversal should not occur. 
 
Rank Reversal by LSM 

 
Consider the following 3  3 reciprocal matrix. 

 

















1

71

521

7
1

5
1

2
1

C

B

A

CBA

  

0768.0

3816.0

5415.0

LLSMEM 

.0765.0

5138.0

4097.0

LSM

 

 
According to EM, A > B > C, EM preserves ordinal transitivity, i.e.. A > B and B > C 
imply A > C. However, LSM yields A < B > C, even though in the pairwise 
comparisons A is preferred to B, that is, 12a  = 2. In addition, LSM yields non-unique 

solutions. The 3  3 matrix ija  = 1, 12a  = 9, 13a  = 5, 23a  = 9, ijji aa ,1 has two LSM 

solutions (.779, .097, .124) and (.410, .524, .066) with the least squares value equal to 
71.48. 
 
Rank Reversal by LLSM 
 

For n  4, LLSM makes no use of coefficients in other rows in the 
calculation of u. This does not appear to be unreasonable when A is consistent where 
any two columns simply differ from each other by a multiplicative constant. However, 
when it is inconsistent one needs to take into consideration the relationship of each 
alternative with every other to net out its overall dominance. Consequently except for 
n = 3, where u coincides with w, LLSM would tend to produce a ranking that is 
insensitive to inconsistencies in the matrix. 

Consider the matrix 
 























1

51418

512

81317

21

5
1

5
1

8
1

2
1

4
1

3
1

8
1

2
1

7
1

E

D

C

B

A

EDCBA

0434.

3869.

1342.

3743.

0612.

 

0416.

3801.

1328.

3839.

0616.

 

 
where  (n) = .045 and  (n) Random  (n) = .040.                          

The rankings are 

EABD wwww   

EADB uuuu   
 

EM       LLSM 

   EM LLSM      LSM 
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According to Theorem 6 one can easily show that the powers of the above 
matrix eventually reveal the strict dominance of row D over row B. 

In closing we would like to point out that inconsistency cannot be dismissed 
as an aberration. We have experienced many situations in which it was impossible to 
force the available information in the form of pairwise comparisons to be entirely 
consistent. Thus rank order would derive from such inconsistent data and there is no 
way to determine the “true ranking” at that level of knowledge. 
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Delphi method, 61, 63 
Demand, 118 
Democratic nominee example, 151 
Dependence, 99 
Determinant, 248 
Diagonal matrix, 242 
Difference scale, 217 
Direct rating method, 234 
Directed graph, 193 
Dirichlet distribution, 115 
Distance example, 37, 53 
 clustering, 73 
Distribution: 
 Chi-square, 174 
 Dirichlet, 115 
 Gamma, 115 
Dominance, 80 
 index of, 81 
 matrices, 218 
Dynamic priority, 87, 88 
 cubic case, 89 
 quadratic case, 89 
 quartic case, 90 
Economic forces, 127 
 influence, 119 
 sectors, 99 
 strength, 119 
 systems, 68 
 theory, 3 
Edges, 259 
Efficiency, 74 
Eigenvalue, 15, 18, 252 
 approach, 30 
 method of comparison, 220 

 Power Law, 181 
 principal, 159, 164 
 of reciprocal matrix, 56 
 sensitivity, 186 
Eigenvalues, all the, 62 
Eigenvector, 17 
 as priorities, 44 
 computation, 170 
 for each scale, 53 
 left, 185 
 nonlinear structure, 223 
 principal, 159 
 right, 185 
 sensitivity, 186 
Eigenvectors, 252 
 all the, 54 
 left, 163, 178 
Electric Power Utility example, 134 
Enduring element, 205 
Energy, 82 
 allocation, 41 
 coal plants, 147 
 storage system, 147 
EPA, 135 
Ergodic, 205 
Ergodicity, 204 
Eulerian graph, 261 
Expected value by AHP, 83 
Exploratory scenario, 123 
 
Family size, 84 
Feedback, x 
 system, 192 
Fixed point theorem, Brouwer, 162 
Forward process, 122, 134 
 first, 144 
 second, 144 
Function, 4 
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 total, 108 
Future, desired, 138 
Future, projected, 138 
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Galois theory, 87 
Gamma distribution, 115 
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Geometric mean, 228 
GNP, 122, 134 
Goal, 19 
Goal programming, 235 
Goals, x 
 shared, 28 
Graph, 259 
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 complete, 261 
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 directed, 193, 259 
 k-irreducible, 263 
 planar, 263 
 reachability, 262 
 strongly connected, 156, 201 
 traceability, 262 
Graphs, 78 
Group process, 28 
 
Half-value sum, 234 
Hamiltonian circuit, 261 
Harmonic mean, 228 
Health-care management, 142 
Hermitian matrix, 243, 254 
Hierarchic composition, 69 
Hierarchy, x, 4, 8, 10, 66 
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 benefit/cost, 30 
 complete, 37, 68 
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Higher education example, 124 
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Importance scale, 16 
Impossibility theorem, 47 
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Incidence matrix, 79 
Inconsistency, measure of, 57 
Indifference curve method, 234 
Impact priority, 204 
Input-output, 68, 82, 99 
 table, 105 
Intensity-incidence matrix, 78 
Intensity of a walk, 78 
Intensity of importance scale, 49 
Interactive programming, 237 
Interdependence, 68, 82 
Interval scale, 217 
Inverse square law optics, 17, 35 
Irreducible matrix, 156, 204 
Isolated block, 157 
Isomorphic graphs, 260 
 
Jordan canonical form, 166 
Judgment, x, 3, 6, 19, 20 
 difference, 29 
 dynamic, 87, 88 
 group, 66 
 probability, 115 
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Langrange multiplier, 224, 226 
Least squares, 227 
 logarithmic, 225 
Level, 8, 28 
Lexicographic order, 235 
Linear combination, 245 
Linearly independence, 250 
Logarithmic least squares, 225, 227 
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Majority rules, 62 
Majority vote, 29 
Manufacturing and mining example, 
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Marginal priority, 85 
Markov Chain, 199 
Mathematical programming methods, 
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 adjoint, 249 
 block diagonal, 157 
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 Hermitian, 242, 254 
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 incidence, 79 
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 irreducible, 156, 201 
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 positive, 155, 174 
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 singular, 249 
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 stochastic, 199 
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 symmetric, 227 

transpose, 242 
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Maximization, 236 
Maximizing benefit to cost ratio, 107 
Mean, 172, 174 
Mean impact, 205 
Measurement, 2 
 achievement, 7 
 conjoint, 238 
 dependence, 99 
 fundamental, 217 
 happiness, 7 
 social, 7 
 standardizing, 76 
 world influence, 119 
Median absolute deviation, 33 
Military strength, 119 
Minimum error, 217 
Modulus, 163 
Multicriterion method, 231, 238 
Multidimensional scaling, 240 
 

Network, 196 
Nodes, 259 
Nominal scale, 217 
Nonhomogeneous system, 250 
Nonsingular matrix, 249 
Normative scenario, 123 
Norm, Euclidean, 65 
Northern Ireland Conflict, ix, 145 
Null Hypothesis, 173 
 
Objectives, ix, 128 
Octonions, 65 
Opinions, 28 
Optimum land use, 153 
Optimizing, 3 
Optimization, 68, 226, 237 
Order: 
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 weak, 61 
Ordered metric method, 234 
Ordered pair, 64 
Ordered set, 66 
Ordered total, 67 
Ordinal scale, 217 
Outcomes versus functions of objectives, 
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Pairwise comparison, 7, 15, 80 
Pareto optimality, 235 
Partition, 67 
Path, 193, 261 
Performance, 3 
Perspective, 3 
Perturbation, 65, 170, 187, 225 
Planar graph, 263 
Planning, 82, 122, 134 
 contingency, 116 
 corporate, 138 
 in Japan, xii 
 in Korea, xii 
Political factors, 123 
Political forces, 127 
Positive matrix, 154, 158 
Primitive matrix, 156, 166, 178-179, 201 
Principal component analysis, 220, 223 
Principal eigenvectors: 
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 existence, 158 
 uniqueness, 158 
Principle of hierarchic composition, 69, 

202 
Priority, ix, 14, 66 
 absolute, 204 
 and graphs, 78 
 composition, 23, 199 
 dynamic, 82, 87 
 eigenvector, 44 
 function, 67 
 impact, 204 
 interdependence, 106 
 index, 81 
 in feedback systems, 198 
 marginal, 82, 85 
 matrix, 69 
 of resources, 117 
 session, 26 
 setting, 3 
 for Sudan, 132 
 vector, 69 
Probability judgments, 115 
Problems, unstructured, 2 
Producer, 114 
Profile matrices, 220 
Promotion question, 152 
Protocol, 26 
Proximity matrices, 220 
Psychotherapy, 39 
Public utilities, 100, 103 
PUC, 136 
 
Quadratic case, 88 
Quartic case, 90 
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Ranking methods, 234 
Rank of matrix, 249 
Ratios, 44, 61 
Ratio scale, 217 
Reachability matrix, 193 
Reality, 6 
Reciprocal matrix, 154, 183, 243 
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Relation: 
 binary, 66 
 quadruple, 64 
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Resource allocation, 106 
Resources, human, 119 
Resource priority, 117 
Risk, 30, 117 
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Scenario, 122, 123, 138 
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 normative, 123 
 Sudan, 131 
School selection example, 23 
Sensitivity of eigenvector, 186 
Sequential elimination methods, 235 
Services, 100, 104 
Simple graph, 259 
Simplex, 251 
Singular matrix, 249 
Skew symmetric matrix, 188, 242 
Social forces, 127 
Social sciences, 7 
Social system, 68 
Social values, 2 
Social welfare function, 47 
Solution of priority problems, 18 
Space, 6, 71 
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Spanning tree, 176, 259 
Spatial proximity methods, 238 
Stability, 3, 7 
Steel industry example, 210 
Stimuli, 52, 221 
Stochastic matrix, 199 
Storage systems, 147 
Strategic assessment, 28 
Strategic consideration, 117 
Stratum, 9 
Strongly connected graph, 157, 201 
Structure, 4, 13 
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Sudan transport study, ix, 130 
Super matrix, 199 
Sustaining element, 205 
Sylvester’s theorem, 177, 256, 257 
Synthesis, 2 
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 design, 3 
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 feedback, 192 
 function, 112 
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 priority, 198 
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 stability, 4 
 structure, 4 
Technological forces, 127 
Technology, 120 
Tensor covariant, 71 
Tenure question, 152 
Time, 7, 71 
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Trade, 8, 119 
Tradeoff, 75 
Transformation, 217 
Transitive, 66 
Transitivity, 46 
Transitory element, 205 
Transportation distribution, 100, 103 

Transpose matrix, 242 
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Trichotomy, 52 
 
Uncertainty, 107 
Utility theory, 219 
 
Value of resources, 117 
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Variance, 172, 220 
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Vote, majority, 29 
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Weakly connected graph, 263 
Weak order, 61 
Wealth example, 35, 54 
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Weber’s law, 48 
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